

Contents

Editorial

3 CRISPR and precision medicine
Sanda-Maria Copotoiu

Review

4 Development, Applications, Benefits, Challenges and Limitations of the New Genome Engineering Technique. An Update Study
Andrei Crauciuc, Florin Tripon, Andreea Gheorghiu, Georgiana Nemes, Alina Boglis, Claudia Banescu

Research articles

10 Comparative Analysis of Hepcidin-25 and Inflammatory Markers in Patients with Chronic Kidney Disease with and without Anemia
Carmen Denise Căldăraru, Dorin Ionuț Tarta, Mirela Liana Gliga, Cristina Tarta, Emilian Carașca, Sorin Albu, Adina Huțanu, Maria Dogaru, Grigore Dogaru

15 The Prevalence of Dysphotopsia in Patients with Recent Cataract Surgery
Andreea Dana Fișuș, Zoltán Madaras, Karin Ursula Horváth

19 Characteristics of Sleep Apnea Assessed Before Discharge in Patients Hospitalized with Acute Heart Failure
Ildikó Kocsis, Lajos Fehérvári, Zoltán Fogarasi, István Adorján Szabó, Attila Frigy

23 Kinetics and Mechanism of Drug Release from Loratadine Orosoluble Tablets Developed without Lactose
Adriana Ciurba, Emőke Réai, Ioana Pop, Paula Antonoaea, Nicoleta Todoran

27 Precursor Synthesis of Some New Macroyclic Compounds
Şerban Andrei Gâz-Florea, Eleonora Mircia, Lavinia Bără (Grama)

31 Relationship Between High Levels of Salivary Cotinine Test and Demographic Characteristics of Pregnant Smokers from Mures County
Ion Mihai Georgescu, Monica Tarcea, Claudiu Marginean, Florina Ruta, Victoria Rus, Remus Sipos, Zoltan Abram

36 The Influence of Some Parameters on Chiral Separation of Ibuprofen by High-Performance Liquid Chromatography and Capillary Electrophoresis
Alina Balint, Anca Gabriela Cărje, Daniela Lucia Muntean, Silvia Imre

Case report

41 Practical Advantages of CBCT in the Surgical Treatment of Impacted Lower Third Molar
Alina Ormenișan, Alina Iacob, Daniel Szava, Balint Bogozi, Adina Coșarcă

46 Statement of ethics

47 Instructions for authors

Acta Medica Marisiensis

Editor-in-Chief

Professor Sanda-Maria Copotoiu
University of Medicine and Pharmacy Tîrgu Mureş

Managing Editor

Associate Professor Adrian Man
University of Medicine and Pharmacy Tîrgu Mureş

Assistant Editors

Lecturer Andrei-Şerban Gâz-Florea
University of Medicine and Pharmacy Tîrgu Mureş

Lecturer Marcel Perian
University of Medicine and Pharmacy Tîrgu Mureş

Technical Editor

Lecturer Valentin Nădăşan
University of Medicine and Pharmacy Tîrgu Mureş

Associate Editors

Professor Leonard Azamfirei
University of Medicine and Pharmacy Tîrgu Mureş

Professor Vladimir Bacăreanu
University of Medicine and Pharmacy Tîrgu Mureş

Professor György Benedek
University of Szeged, Faculty of Medicine, Hungary

Professor Imre Benedek
University of Medicine and Pharmacy Tîrgu Mureş

Professor Angela Borda
University of Medicine and Pharmacy Tîrgu Mureş

Professor Klara Brânzaniuc
University of Medicine and Pharmacy Tîrgu Mureş

Professor Constantin Copotoiu
University of Medicine and Pharmacy Tîrgu Mureş

Professor Carol Csedő
University of Medicine and Pharmacy Tîrgu Mureş

Professor Radu Deac
University of Medicine and Pharmacy Tîrgu Mureş

Professor Dan Dobreanu
University of Medicine and Pharmacy Tîrgu Mureş

Professor Minodora Dobreanu
University of Medicine and Pharmacy Tîrgu Mureş

Professor Daniela Dobru
University of Medicine and Pharmacy Tîrgu Mureş

Professor Grigore Dogaru
University of Medicine and Pharmacy Tîrgu Mureş

Professor Imre Egyed
University of Medicine and Pharmacy Tîrgu Mureş

Professor Tiberiu Ezri
Wolfson Medical Center, Holon, Affiliated to Tel Aviv University, Israel

Professor István Édes
University of Debrecen, Hungary

Professor Dietmar Glogar
Medical University of Vienna, Austria

Professor Gabriel M. Gurman
Ben Gurion University of Negev, Faculty of Health Sciences Beer Sheva, Israel

Professor Simona Gurzu
University of Medicine and Pharmacy Tîrgu Mureş

Professor Silvia Imre
University of Medicine and Pharmacy Tîrgu Mureş

Professor Miklós Kásler
National Institute of Oncology, Budapest, Hungary

Professor Marius Măruşteri
University of Medicine and Pharmacy Tîrgu Mureş

Associate Professor Monica Monea Pop
University of Medicine and Pharmacy Tîrgu Mureş

Professor Daniela Lucia Muntean
University of Medicine and Pharmacy Tîrgu Mureş

Professor Örs Nagy
University of Medicine and Pharmacy Tîrgu Mureş

Professor Ioan Nicolaescu
University of Medicine and Pharmacy Tîrgu Mureş

Professor Aurel Nireştean
University of Medicine and Pharmacy Tîrgu Mureş

Professor Francisco Nogales
University of Granada, Faculty of Medicine, Spain

Professor Sorin Popşor
University of Medicine and Pharmacy Tîrgu Mureş

Professor Lucian Puşcaşiu
University of Medicine and Pharmacy Tîrgu Mureş

Professor Monica Sabău
University of Medicine and Pharmacy Tîrgu Mureş

Professor Rosa Marin Saez
University of Valencia, Spain

Professor Ario Santini
University of Edinburgh, Scotland, UK

Professor Toru Schimizu
Institute of Multidisciplinary Research for Advanced Materials, Sendai, Japan

Professor Francisc Schneider
University of Medicine and Pharmacy Timișoara

Professor Dan Teodor Simionescu
Clemson University, Department of Bionengineering, Clemson, USA

Professor Emese Sipos
University of Medicine and Pharmacy Tîrgu Mureş

Associate Professor Mircea Suciu
University of Medicine and Pharmacy Tîrgu Mureş

Professor Béla Szabó
University of Medicine and Pharmacy Tîrgu Mureş

Professor Zoltán Szentirmay
National Institute of Oncology, Budapest, Hungary

Professor Tibor Szilágy
University of Medicine and Pharmacy Tîrgu Mureş

Professor Peter Szmulik
University of Texas Southwestern Medical Center, Dallas, USA

Professor Camil E. Vari
University of Medicine and Pharmacy Tîrgu Mureş

Acta Medica Marisiensis (ISSN: 2068-3324) is the official publication of the University of Medicine and Pharmacy of Tîrgu-Mureş, being published by University Press, Tîrgu Mureş.

The journal publishes high-quality articles on various subjects related to research and medical practice from the all the medical and pharmaceutical fields, ranging from basic to clinical research and corresponding to different article types such as: reviews, original articles, case reports, case series, letter to editor or brief reports. The journal also publishes short information or editorial notes in relation to different aspects of the medical and academic life.

Information for contributors

Manuscripts must be submitted via editorial manager system, available online at www.editorialmanager.com/amma

Correspondence

All correspondence should be addressed to the Editorial Office:

Acta Medica Marisiensis

University of Medicine and Pharmacy of Tîrgu Mureş
38, Gh. Marinescu St, 540139 Tîrgu Mureş, Romania

Managing Editor Associate Professor Adrian Man
or sent by e-mail to ammjournal@umftgm.ro

Acta Medica Marisiensis is indexed in the following international databases:

- Celdes
- CNKI Scholar
- CNPIEC
- EBSCO Discovery Service (since 01 July 2010, first indexed number - no.4/2010)
- Google Scholar
- J-Gate
- Primo Central (ExLibris)
- ReadCube
- Summon (Serials Solutions/ProQuest)
- TDOne (TDNet)
- WorldCat (OCLC)

DTP and Website Management

Editura Prisma

Disclaimer

The views expressed in this journal represent those of the authors or advertisers only. In no way can they be construed necessarily to reflect the view of either the Editors or the Publishers.

CRISPR and precision medicine

Copotoiu Sanda-Maria*

Editor-in-Chief

The deceiving outcome of Jerry Gelsinger's volunteer enrollment in a genetic study threatened to put the brakes on genetic research. Instead, despite the hidden risks, unanticipated and obviously unwanted, knowledge continued to evolve. The tragic death of a naïve volunteer on the altar of genetics ended in four lessons written by the leading personality and at that time, culprit for the obviously surprising collateral loss [1]. These were perceived at the time as a lecture behind the firewall the Penn University managed to build between James M. Wilson (the geneticist in cause) and the prosecutors [2]. Nine years have passed between J. Gelsinger's lethal outcome and Wilson's *mea culpa*. His death was preceded by seven years of intense research in genetics at the Penn University in the USA.

Today we are confronted with unacceptable mortality in sepsis and septic shock despite large and intense initiatives to oppose it. Antibiotics are either under optimally used, stewardship is reduced sometimes to a matter of perception. These tools are improperly used or inefficient at the end of the day.

Towards the conclusion of his mandate, president Obama launched and supported the initiative of "precision medicine". Precision medicine was defined as an "emerging approach for disease prevention and treatment that takes into account people's individual variations in genes, environment and lifestyle" [3]. The aim of this initiative was to generate the scientific evidence to be used for moving the concept of precision need into clinical practice. This would offer be the best tools to practice individualized medicine and thus become more efficient and make a change to the best in patients' lives. The longer term goals comprised the recruitment of over 1 million American volunteers, the research cohort, who would share genetic data, biologic samples and diet/lifestyle, information, all emerging from their electronic health records [3]. Put this way, it would seem to offer the humanity one exceptional chance to contribute to groundbreaking evidence to support further initiatives and disease management. Naturally, new and ancillary ethic engrams were promoted at this point: engaged participants, responsible data sharing and privacy protection.

Meanwhile, researchers published papers on antibacterial autophagy. Bacteria penetrating the cells are sensed and tagged (the microscopic paint ball war) with molecules called ubiquitin which mark the bacteria for destruction. This process is jeopardized by genetic mutations in the human cells. Invading bacteria are marked by E3 ligases, proteins that decorate the invaders with ubiquitin early in autophagy. According to the Broad Institute, one of the

most prestigious North American Institute of Research in bioengineering, there are 617 known ligases [4].

Moreover, it appears that cellular miscommunication plays a crucial role in inflammation. There are cytokines that do not act like switchers to be turned on and off, but rather tuned. Therefor they are considered to behave like biased agonists for triggering some G protein-coupled receptors – GPCRs involved in tunable cytokine activity. It was stated that "variations in a single cytokine can lead to biased downstream signaling and can thereby cause human disease" [5].

The Broad Institute launched recently major research initiatives to study among others, why cancers become drug resistant.

This first 2017 issue of the *Acta Medica Marisiensis* publishes a welcome review on CRISPR (Clustered Regularly Interspaced Short Pahindromic Repeats) [6]. Genome editing exists since 2012, but in 2013 the TALE Nucleases (Transcription Activator-Like Effector Nucleases) were shadowed by the engineered CRISPR-Cas9 system first harnessed for mammalian genome editing by Fang Zhang of the Board Institute and MIT. The description of the CRISPER-Cas9 system used the words: "efficiency, effectiveness and precision" [4].

The reactions did not wait for long. The United Kingdom expressed its point of view through the Nuffield Council on Bioethics, an organism founded jointly by the Medical Research Council, the Nuffield Foundation and the Wellcome Trust. Thus they published their analysis and conclusions on a generous document on genome editing [7].

A quick search last evening on cccDNA clearance revealed largely over 92000 results for cccDNA. Obviously the magnitude of the issue and the potential for groundbreaking results of using bioengineering at this stage is impressive to understate the facts.

This editorial was triggered by the seduction of precision medicine mirrored by the review written by Crauciuc et al and hopefully is deprived of any conflict of interest.

References

1. Wilson JM - Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. *Molecular Genetics and Metabolism*. Mol Genet Metab. 2009 Apr;96:151-7.
2. Wilson RF - The Death of Jesse Gelsinger: New Evidence of the Influence of Money and Prestige in Human Research. *Am J Law Med*. 2010;36:295-325.
3. www.nih.gov/precisionmedicine
4. www.broadinstitute.org.research
5. Kim AR, Ulrich JC, Wilmes S, et al. - Functional Selectivity in Cytokine Signaling Revealed Through a Pathogenic EPO Mutation. *Cell*. 2017 Mar 9;168:1053-1064.e15.
6. Crauciuc A, Tripon F, Gheorghiu A, Nemes G, Boglis A, Banescu C - Development, Applications, Benefits, Challenges and Limitations of the New Genome Engineering Technique. An update study. DOI: 10.1515/amma-2017-0007
7. www.nuffield.bioethics.org. Nuffield Council on Bioethics 2016. Genome editing. An ethical review.

* Correspondence to: Sanda-Maria Copotoiu
E-mail: sanda_copotoiu@yahoo.com

REVIEW

Development, Applications, Benefits, Challenges and Limitations of the New Genome Engineering Technique. An Update Study

Andrei Crauciuc¹, Florin Tripón^{1*}, Andreea Gheorghiu¹, Georgiana Nemes¹, Alina Boglis¹, Claudia Banescu^{1,2}

¹ University of Medicine and Pharmacy Tîrgu Mureş, Romania

² Center for Advanced Medical and Pharmaceutical Research, University of Medicine and Pharmacy Tîrgu Mureş, Romania

We assume that the CRISPR Cas9 theory must be delimited by applicability, because the consequences of long term DNA manipulation remain unknown. Moreover, the irreversibility of this procedure should instigate researchers to reserved opinions. Usefulness as well as benefits of CRISPR Cas9 made it one of the most popular and used genome editing technique. But with its huge potential, ethical and safety concerns emerge. Therefore, before continuing research in this direction we should have a well organized system that is able to make that differentiation between research and reproduction. However we truly believe in the future of genetic engineering and with the CRISPR-Cas9 system we expect that the opportunity of treating now so called incurable diseases arises. Time is all we need.

Keywords: CRISPR-Cas9, Cpf1, Class 2 CRISPR effector, RNA guided

Received 7 November 2016 / Accepted 3 February 2017

The development of genome engineering

Genome engineering

An important step for genomic engineering was achieved in 1990 by C. Srinivasan a chemist at Johns Hopkins University, who tried to manipulate bacterial enzymes which could cut DNA [1].

The first step in the genetic engineering process was the division of the chromosomal DNA using genome editing techniques such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). The second step was to increase its specificity by using clustered regularly interspaced short palindromic repeats (CRISPR) associated with the Cas9 protein system (CRISPR-Cas9) which has RNA-guided (g-RNA) nucleases that precisely interrupts targeted sequences at the desired locus in the genome of any living organisms [2]. Moreover, there is a possibility to insert specific sequences into the DNA.

Genome editing tools play an important role in genetic engineering, and that is the reason why the CRISPR-Cas9 system has screen platforms which can be operated in various formats, such as the knockout, knockdown and activation screens. Their purpose is to enable high-throughput interrogation of gene functions in healthy and compromised organisms, in order to target coding and non-coding regions throughout the genome, and last but not least, to induce less off-target effects [3].

The CRISPR-Cas9 system

The CRISPR system was used for the first time in 2002 and the theory sustaining it was based on the adaptive im-

mune system of bacteria. Initially, the mechanism had a Cas9 enzyme which used RNA to guide itself on the complementary sequences of DNA [4,5].

Several types of Cas enzymes have been developed, but the most well-known is called Cas9, originally discovered in *Streptococcus pyogenes* [7, 8, 9]. Three major types of the CRISPR-Cas system have been delineated, further divided into several subtypes and a few chimeric variants, [5] of which type II has been studied the most [6].

Scientists' have focused on the immune system possessed by bacteria that are constantly adapting to foreign invaders such as viruses and plasmids. Further analysis detected clustered regularly interspaced short palindromic repeats (CRISPRs), meaning that there are short repetitions separated by nonrepetitive sequences, called "spacer DNA," acquired from an early encounter with foreign DNA.

The nuclease Cas (CRISPR associated proteins) uses spacer DNA to identify and crop the DNA of the invaders. Moreover, in association with a guide RNA, Cas is directed towards a specific target which needs to be removed leading to a resistance to the attack of the virus.

This process could be applied to the nucleus of any living cell. The system would attach a DNA sequence followed by the Cas9 which would unzip the genome, pair it to the target RNA, and two molecules would perform the cut. Afterwards, a repairing process would be initiated, however there would be a high risk of random mutations resulting in a disabled gene. Researchers have the option to replace the mutant sequence with a healthy new version in stem cells or fertilised eggs and to target more than one gene at once, making the CRISPR Cas 9 system an im-

* Correspondence to: Florin Tripón
E-mail: tripón.florin.2010@gmail.com

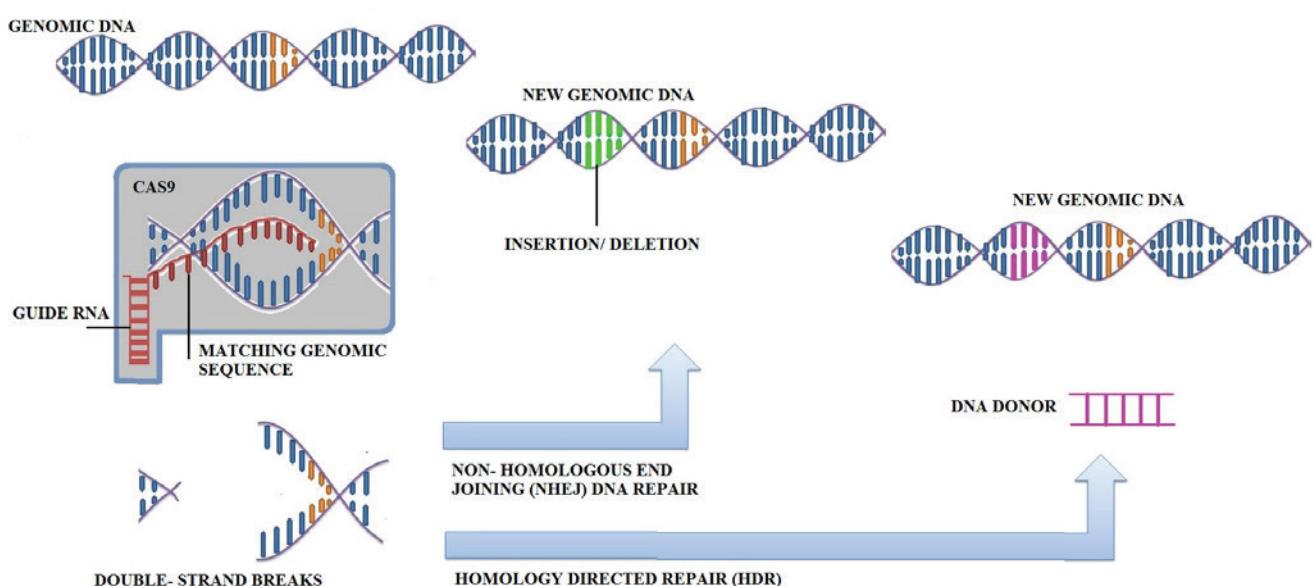
portant tool for studying complex diseases and improving different biotechnologies [10,11]. Figure 1 illustrates the process of CRISPR-Cas9 associated system.

New proteins discovered (class 2 CRISPR effector)

In the last quarter of 2015, B. Zetche and F. Zhang reported another class of CRISPR effector namely Cpf1 proteins. The purpose of their discovery was to find a safer approach in this technique and to overcome its current limitations. From the total of 16 Cpf1 enzymes discovered, two are compatible with human cells. The CRISPR-Cpf1 technique has the following advantages: a Cpf1 small size enzyme, a single g-RNA molecule compared to Cas9 which needs two molecules and the DNA lysis being produced in several places offering multiple choices. Moreover, the lysis has a different approach by creating "sticky end" which is easier to control compared to Cas9 which creates "blunt ends". Another positive aspect of the "sticky end" is the fact that the insertion of DNA can be directed via the information this procedure carries, making it more manageable [13, 14, 15]. The Cpf1 enzyme is safe to use during the procedure because it is easy to handle [14]. Research institutes have recognised the importance of these new findings and have made the legal preparations in order for it to be beneficial to other researchers and to incorporate the enzyme into their CRISPR system for superior scientific findings [16]. As F. Zhang explained "We are committed to making the CRISPR-Cpf1 technology widely accessible. Our goal is to develop tools that can accelerate research and eventually lead to new therapeutic applications. We see much more to come, even beyond Cpf1 and Cas9, with other enzymes that may be repurposed for further genome editing advances [14, 17]."

Applications and Benefits

The CRISPR-Cas9 system is applied in various scientific fields, such as: medicine and biology, pharmacology and biotechnology engineering.


Medicine

An area where the CRISPR-Cas9 system has provided its advantages was that of genetic recessive disorders. To investigate the possibility of gene correction in adult stem cells using CRISPR-Cas9, the focus was on cystic fibrosis (CF), where adult intestinal stem cells were isolated and expanded in culture, then the mutant F508del allele was corrected using the CRISPR-Cas9 and the functionality of the targeted allele was demonstrated [18, 19].

Another application of this system is in sickle-cell anaemia and Duchene muscular dystrophy. Additionally, Cas9 can be used to correct the causative mutation in dominant negative disorders such as transthyretin-related hereditary amyloidosis or different forms of retinitis pigmentosa [20].

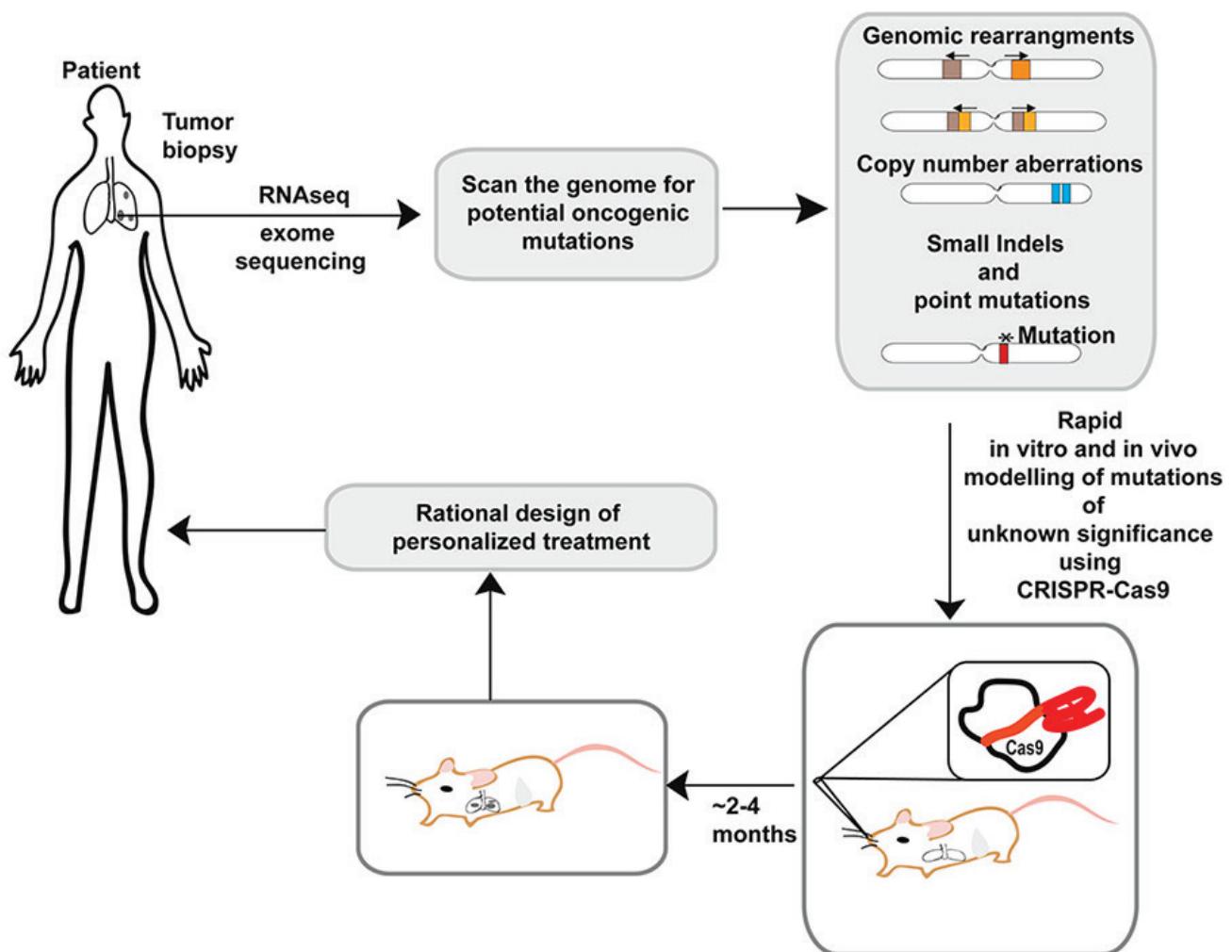
Huntington's is an autosomal dominant neurodegenerative disease caused by trinucleotide repetition (CAG) in the HTT gene after 40 CAG repeats, the majority of patients develop the signs and symptoms of the disease [21,22]. The CRISPR-Cas9 system could treat this illness by excluding the trinucleotide repetition from the patient's DNA. By bringing together the CRISPR-Cas9 system and induced pluripotent stem cell (IPSC) the editing process could be improved [24], and there are several strategies for this procedure [25]. Besides Huntington's disease, this technique could be performed in Rett syndrome [26] and schizophrenia [27].

An enormous milestone is about to be attained in cancer research by providing new methods to configure can-

Fig. 1. The process of the CRISPR-Cas9 system. The g-RNA and Cas9 enzyme induce the bicolateral deletion of a targeted DNA fragment, followed by DNA repair methods which either restore the DNA sequence or fail to do so. As a consequence, the genome could become unstable due to chromosomal aberrations such as translocations or deletions if the double strand breaks (DSBs) remain unrepaired or misrepaired. Apoptosis could be induced, and so could senescence, which leads to the loss of heterozygosity [12]. The NHEJ and homology directed repair (HDR), DNA repair methods for DSBs are complex and we elaborated on them in a short description here. Other molecules which take part in the process are: Ku70, Ku80, DNA PK-activation, Ligase IV, XRCC4, XLF, MRN, ATM, Rad 51.

cer progression *in vivo*. The main focus is on editing and manipulating the genome of somatic cells in mammals by using basic, flexible and cost-effective elements [28]. Progressive genetic and epigenetic alterations will eventually develop cancer in a living organism and the CRISPR-Cas9 system has variable components with applications in treating and modelling this illness. Currently, there are trials focused on modelling oncogenic mutation in cell lines [29], adult animals [30] disabling oncogenic viruses [31] or manipulating the cancer genome [32].

The epigenome and transcriptome is an important cause of cancer genesis, and their consistent exploitation is beneficial in improving the therapy and manipulation of cancer [33].


Concerning prostate cancer cells, a flexible aptamer-liposome CRISPR-Cas9 chimera which integrated an RNA aptamer was used for specific attachment to the cells membrane, while the liposome distributed the CRISPR/Cas9 system that targeted the polo-like kinase 1 in the cells. The results observed *in vitro* showed a gene inhibition effect, and *in vivo*, tumor regression [34]. Moreover,

the CRISPR- Cas9 editing tool revealed targets for Ibrutinib therapy intended to deactivate the pre B cell receptor signal in acute lymphoblastic leukemia, such as B lymphocyte kinase and Bruton's tyrosine kinase [35].

In addition, a previously unimaginable perspective for CRISPR-Cas9 have been reported in personalised medicine (Figure 2). Regarding lung cancer, biopsy samples were taken from patients' tumours and EGFR mutant genes were identified. With a virus-delivered CRISPR-Cas 9 editing tool the mutation could be detached or even destroyed meaning that in the future „molecular surgery” could be performed on DNA specifically targeting the disease. Nevertheless, a combination of therapies could be used for the patients' benefit, such as: radiation and chemotherapy, and even traditional surgery [36].

Biotechnology engineering and applications in Pharmacology

In the pharmaceutical industry, the CRISPR and Cre/Lox system played an important role when the development

Fig. 2. Applications of CRISPR-Cas9 in personalized medicine (republished with the permissions of Andreea Ventura and Swiss Med Wkly editor-in-chief. Reference no. 28: [https://smw.ch/index.php?id=75&tx_ezmjournal_article\[detailIdentifier\]=smw.2015.14230](https://smw.ch/index.php?id=75&tx_ezmjournal_article[detailIdentifier]=smw.2015.14230)). The importance of this procedure in personalised medicine is the fact that it allows the discovery of functional consequences given by DNA sequences or mutations with unknown pathogenesis and repercussions. The first step consists of the discovery of these mutations in the patient's biopsied tumour tissue. The second step is the creation of these mutations *in vitro* and *in vivo* and via the documentation of the functional repercussions (in this example, the case of a mouse). Such information can be used to design an optimised personalised treatment [28].

of a vaccine for the Pseudorabies virus took place with the help of gene editing technology [37]. This technology provided new insights when post-vaccine immunity was inefficient and the evolution of the virus needed to be stopped.

Companies have started to invest in this revolutionary technique. There may be a financial purpose for private companies, as they have invested in the majority of the projects involving the CRISPR system.

„Interest in the genes editing forces of CRISPR-Cas9 by pharmaceutical companies literally exploded in the last year”, said Bill Lundberg [38].

Their aim was to engineer immune cells and blood stem cells, discover drugs, new targets in preclinical models for a variety of disease areas and to breed plants for agricultural uses.

Nowadays there are therapies for the suppression of HIV-1 replication, yet there are none for the deactivation of the virus in the latent reservoirs. Using the CRISPR-Cas9 system in combination with two antiviral gRNAs the blocking of viral replication could be attained [39]. Another disease to which this system brings therapeutic value is hepatitis B; knowing that the mini-chromosomal cccDNA generates a new viral antigen, the editing tool could be used to remove cccDNA which would lead to lower HBsAg levels [40].

There is a large number of scientific papers published revealing the successful application of the CRISPR-Cas9 technique, and we would like to mention some of these: the dicot and monocot plant genome [41], plant suspension cells with applications in pharmacology [42], bacteria, zebra fish, non-viable human embryos, mammalian cells, insect-resistant and herbicide-tolerant plant varieties, vaccine development and others. „In the short term, the development of new techniques or the improvement of existing ones will provide further instruments to counter the appearance of resistant weeds and insects and to reduce the use of agrochemicals” [43].

Challenges and Limitations

The delivery of g-RNA and the Cas9 protein has been a constant challenge, but the researchers used plasmids, viruses, and ribonucleoproteins (RNPs) as method for optimizing their gene-editing procedures, even though these three delivery methods had limitations [44,45].

One of the most significant limitations of the CRISPR-Cas9 system was the appearance of certain off-target effects, although these represented a small percentage compared to previous techniques of genetic engineering. Various strategies had been reported to reduce off-target effects [46, 47, 48]. It is very important to select an optimizing RNA guide, Cas9 enzyme and unique target sequences [23]. Moreover, CRISPR-Cpf1 has recently shown promises in diminishing these effects. Additionally, F Zhung maintains that “Cpf1 may overcome one of CRISPR-Cas9’s few limitations. The system works well for disabling genes, it is often difficult to truly edit them by replacing one DNA sequence with another” [13].

A limitation and a constant provocation at the same time was the protospacer sequence in the g-RNA represented by the 18-20-nt spacer region, and which the fundamental reason for off-target and on-target effects in CRISPR experiments [45]. Twenty DNA bases pairs (bp) are the maximum target for the CRISPR-single RNA guide (sgRNA) [23]. Thus, no more than 20bp deletions and insertions can be done.

The precision of Cas9 was found to be enormously lower than in the theoretical approach [45]. As a result, new concepts have gone into development, such as: a more accurate Cas9 system, more effective deliveries and more powerful sgRNA [49, 50].

Other researchers found a large number of unexpected mutations, described as off-target effects, which means that the CRISPR-Cas9 system interfered with other regions. Furthermore, there were excessive and unwanted errors made on mice embryos or adult human cells compared to other studies, although we must mention that they only analysed the exons. If they would have had analysed the whole genome, the number of mutations would probably have increased [50].

The consequences were not described in the literature due to the fact that the subjects and their descendants were not monitored for a long period of time. Thus, the consequences were unknown mainly because only a few studies had the objective of following the off-target effects.

Even though this is a controversial subject, there have been studies which reported a minimal percentage of inducing tumours as adverse reactions [51,52,53].

Therapeutic applications have encountered challenges and limitations, since the CRISPR-Cas9 must be precisely defined or improved in the case of safe long term usage in human disease treatments [56]. Depending on DNA’s complexity, CRISPR-Cas9 specificity decreases. Therefore, new challenges arise in adapting these techniques arise due to a low proportion of off-target effects seen in bacteria, zebra fish and mice compared to human cells.

This evolution in molecular genetics offers many promises, but it also brings an important ethical debate which was emphasized by use of the technique on human embryos.

The international bioethics committee of UNESCO considers that the CRISPR Cas9 system should only be used as a preventative, diagnostic and therapeutic procedure, without modifying the descendants’ genome. Until now, this technique has held the possibility of treating certain diseases, such as: sickle cell anemia, cystic fibrosis and several types of cancer [57].

In March 2015, the researchers who worked to develop CRISPR acknowledged the unsafeness of this method and highlighted the topic of eugenics [49].

At the same time, using the CRISPR-Cas9 method, Chinese scientists have tried to edit the human genome by modifying the gene responsible for beta thalassemia (HBB). In order to avoid ethical concerns, they operated on nonviable embryos [50]. The technique involved the

injection of the CRISPR-Cas9 system into 86 embryos, of which 71 survived. Of the surviving embryos, 54 were tested, only 28 embryos dividing successfully, but not all of them had the replaced genetic information. Following this experiment, the scientists ended the trial and declared that the technology was imperfect, and in order to be used on viable embryos it should have a 100% success rate [50].

They also declared that there were no reasons for ethical concerns because the experiments were made on non-viable embryos.

In December 2013 European Union Council and Parliament adopted Horizon 2020 framework which allow and funding human embryo research if all its clauses and procedures are accomplished, currently human gene editing is permitted in 18 Member States, whilst 3 prohibit it and the rest have no specific legislation.

Recently in Great Britain, researchers have received the approval to genetically edit viable human embryos, which are to be donated by patients taking part in in vitro fertilization procedures. The scientific study would end in 7 days, and after this time the embryos would be eradicated due to ethical concerns [55] because according to current legislation can't be used human embryos in the blastocyst stage.

Their opponents were worried about the consequences these interventions would have on the human genome, especially in future generations. Likewise, the risk encountered in clandestine exploitation and parents being tempted with a genetically modified embryos in order to gain physical and intellectual traits for their offspring after birth [54].

Conclusion

Without any doubt, the CRISPR system holds many perspectives in the near future, leading to new enzymes being discovered and used as editing tools. For instance, Cpf1 enzyme can be easily and precisely manipulated compared to Cas9 with the purpose of obtaining aimed results without off-target effects. Despite the greater benefits and potential of this technique there is the need for well defined rules and legislations for a consistent worldwide implementation.

Conflict of interest

None to declare.

References

1. Yang GK, Jooyen C, Srinivasan C. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. *Proc Natl Acad Sci USA*. 1996;93:1156-1160.
2. Carroll D, Charo RA. The societal opportunities and challenges of genome editing. *Genome Biology*. 2015;16(1):1-9.
3. Xue HY, Ji LJ, Gao AM, Liu P, He JD, Lu XJ. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. *J Med Genet*. 2016;53:91-97.
4. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in *Escherichia coli*, and identification of the gene product. *J Bacteriol*. 1987;169:5429-5433.
5. Makarova SK, Haft DH, Barrangou R. Evolution and classification of the CRISPR-Cas systems. *Nat Rev Microbiol*. 2011;9:467-477.
6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science*. 2012;337(6096):816-821.
7. Lokody I. Correcting genetic defects with CRISPR-Cas9. *Nat Rev Genet*. 2014; 15:63.
8. Burgess JD. In vivo correction of genetic disease in adult mice. *Nat Rev Genet*. 2014; 15:291.
9. Burgess JD. Technology: A CRISPR genome-editing tool. *Nat Rev Genet*. 2013;14: 80-81.
10. Blake W, Esther VD, Jelle BB, et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. *PNAS*. 2011;108(25): 10092-10097.
11. Josiane EG, Marie-E've D, Manuela V, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. *Nature*. 2010;468: 67-72.
12. Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining. *Transl Cancer Res*. 2013;2(3):130-143.
13. Ledford H. Alternative CRISPR system could improve genome editing. *Nature*. 2015; 526:17.
14. Bernd Z, Jonathan SG, Omar OA. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. *Cell*. 2015;163(3):759-771.
15. Lander ES. The Heroes of CRISPR. *Cell*. 2016;164(1-2):18-28.
16. CRISPR-Cpf1 May Outsnip CRISPR-Cas9. *GEN News Highlights*. <http://www.genengnews.com/gen-news-highlights/crispr-cpf1-may-outsnip-crispr-cas9/81251791/>. [accessed 26.Feb.2015].
17. Scientists discover new system for human genome editing with potential to increase power and precision of genome engineering. *Broadinstitute News*. <https://www.broadinstitute.org/news/7272>. [accessed 23.Feb.2016].
18. Yui S, Nakamura T, Sato T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. *Nat Med*. 2012;18, 618-623.
19. Gerald S, Koo BK, Sasselli V. Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. *Cell*. 2013;13(6): 653-658.
20. Patrick DH, Eric SL. Development and Applications of CRISPR-Cas9 for Genome Engineering. *Cell*. 2014;157(6): 1262-1278.
21. U.S National Library of Medicine. Huntington disease. Genetic Home Reference. <https://ghr.nlm.nih.gov/condition/huntington-disease>. 3 May 2016. [accessed 10.04.2016].
22. U.S National Library of Medicine. HTT Huntington. Genetic Home Reference. <https://ghr.nlm.nih.gov/gene/HTT>. 3 May 2016. [accessed 10.04.2016].
23. Bae S, Kweon J, Kim HS, Kim JS. Microhomology-based choice of Cas9 nuclease target sites. *Nat Methods*. 2014;11(7):705-706.
24. Li HL, Gee P, Ishida K, Hotta A. Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system. *Methods*. 2015;101:27-35.
25. Rajat M, Kiran M. Expanding the genetic editing tool kit: ZNFs, TALENs and CRISPR-Cas 9. *The Journal of Clinical Investigation*. 2014;124(10):4154-4161.
26. Sara R, Federica U, Melanie H, et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. *Nat. Cell Biol*. 2012;14: 911-923.
27. Brennand KJ, Simone A, Jou J et al. Modelling schizophrenia using human induced pluripotent stem cells. *Nature* 2012;473: 221-225.
28. Kannan R, Ventura A. The CRISPR revolution and its impact on cancer research. *Swiss Med Wkly*. 2015;145:w14230.
29. Wen WS, Yuan ZM, Ma SJ, Xu J, Yuan DT. Crispr-cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies. *Int J Cancer*. 2016;138:6;1328-1336.
30. Randall J, Sidi C, Yang Z, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. *Cell* 2014;159:440-455.
31. Hu Z, Yu L, Zhu D, et al. Disruption of HPV16-E7 by CRISPR/Cas System Induces Apoptosis and Growth Inhibition in HPV16 Positive Human Cervical Cancer Cells. *Biomed Res Int*. 2014; Article ID:612823.
32. Tang L, Jacson KS, Zhihong L, Edwin C, Francis JH, Zhenfeng D. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. *Cancer Letters*. 2016;373(1):109-118.
33. Wen WS, Yuan ZY, Ma SJ, Xu J, Yuan DT. CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies. *Int J Cancer*. 2016;138(6):1328-36.
34. Zhen S, Takahashi Y, Narita S, Yang YC, Li X. Targeted delivery of

CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome. *Oncotarget*. 2016. DOI: 10.18632/oncotarget.14072.

35. Kim E, Hurtz C, Koehrer S, et al. Ibrutinib inhibits pre-BCR+ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK. *Blood*. 2016. doi.org/10.1182/blood-2016-06-722900.

36. Huibin T, Joseph BS. CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: a personalized molecular surgical therapy. *EMBO*. 2016;8(2):83-85.

37. Xun LX, Leqiang S, Teng Y, et al. A CRISPR/Cas9 and Cre/Lox systembased express vaccine development strategy against re-emerging Pseudorabies virus. *Sci Rep*. 2016; 6:19176.

38. Money of the genes: CRISPR attracts a lot of investors. *News & Tips*. 2016. <http://allcompanies.website/2016/01/25/money-of-the-genes-crispr-attracts-a-lot-of-investors/>. [accesed 13.02.2016].

39. Wang G, Zhao N, Berkhout B, Das AT, et al. A Combinatorial CRISPR-Cas9 Attack on HIV-1 DNA Extinguishes All Infectious Proivirus in Infected T Cell Cultures. *Cell Rep*. 2016;17(11):2819-2826.

40. Edward AP, Ryan BP, Benjamin JF, Jeffrey SG, Aijaz A, Robert GG. Future Therapy for Hepatitis B Virus: Role of Immunomodulators. *Curr Hepatol Rep*. 2016;15(4):237-244.

41. Zhengyan F, Botao Z, Wona D, et al. Efficient genome editing in plants using a CRISPR/Cas system. *Cell Res*. 2013; 23:1229-1232.

42. Mercx S, Tollet J, Magy B, Navarre C, Boutry M. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cell. *Front Plant Sci*. 7:40. doi: 10.3389/fpls.2016.00040 <http://dx.doi.org/10.3389/fpls.2016.00040>. [accesed 01.02.2016].

43. Lombardo L, Coppola G, Zelasco S. New Technologies for Insect-Resistant and Herbicide-Tolerant Plants. *Trends Biotechnol*. 2016;34(1):49-57.

44. Ain QU, Chung JY, Kim JH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. *J Control Release*. 2015;205:120-127.

45. Bing S, Liz HM, Yi G, Ying P. The Rise of CRISPR/Cas for Genome Editing in Stem Cells. *Stem Cells Int*. 2016;Volume 2016:17 pages. Article ID 8140168: doi:10.1155/2016/8140168.

46. Cho S W, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. *Genome Res*. 2014; 24:132-141.

47. Tang L, Jacson KS, Zhihong L, Edwin C, Francis JH, Zhenfeng D. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. *Cancer Lett*. 2016;373(1):109-118.

48. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. *Science*. 2016;351(6268):84-88.

49. Julie S, Jonathan W, David G. Opposition mounts to genetic modification of human embryos. <http://mobile.reuters.com/article/healthNews/idUSKBN0TK33F20151201>. [accesed 10.02.2016].

50. Piping L, Yanwen X, Xiya Z et al. CRISPR/Cas9-mediated gene editing in human triplo-nuclear zygotes. *Protein & Cell*. 2015; 6(5):363-372.

51. Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. *Nature*. 2014;514:380-384.

52. Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. *Cell*. 2014;159(2):440-450.

53. Lu XJ, Qi X, Zheng DH, Ji LJ. Modeling cancer processes with CRISPR-Cas9. *Trends Biotechnol*. 2015;33:317-319.

54. Katerine S, Michael B, Annelien B, et al. CRISPR germline engineering – the community speaks. *Nature Biotechnology*. 2015; 33:478-486.

55. Ewen C. UK scientists gain licence to edit genes in human embryos. *Nature*. 2016;530,18-19.

56. Yanfang F, Jennifer AF, Cyd K. High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. *Nat Biotechnol*. 2013;31(9):822-826.

57. Roni A. UNESCO panel of experts calls for ban on “editing” of human DNA to avoid unethical tampering with hereditary traits. *UNESCO Media Service*. 10 May 2016.

RESEARCH ARTICLE

Comparative Analysis of Hepcidin-25 and Inflammatory Markers in Patients with Chronic Kidney Disease with and without Anemia

Carmen Denise Căldăraru¹, Dorin Ionuț Tarta^{1*}, Mirela Liana Gliga¹, Cristina Tarta², Emilian Carașca³, Sorin Albu³, Adina Huțanu^{4,5}, Maria Dogaru⁶, Grigore Dogaru¹

¹ Department of Nephrology, University of Medicine and Pharmacy of Targu Mures, Romania

² Department of Internal Medicine, County Clinical Hospital Targu- Mures, Romania

³ Department of Internal Medicine, University of Medicine and Pharmacy of Targu Mures, Romania

⁴ CCAMF of University of Medicine and Pharmacy of Targu Mureș, Romania

⁵ Department of Laboratory Medicine, University of Medicine and Pharmacy of Targu Mureș, Romania

⁶ Department of Pharmacology, University of Medicine and Pharmacy of Targu Mureș, Romania

Introduction: Hepcidin is a regulatory protein in iron metabolism; we do not know the role in chronic kidney disease anemia. **Methods:** 22 patients with CKD anemia and 15 patients with CKD without anemia were investigated. CKD anemia-inclusion criteria: over 18 years, hemoglobin \leq 12 g/dl for women and \leq 13 g/dl for men, no treatment for anemia 6 months before enrollment, glomerular filtration rate (eGFR) $<$ 60 ml/min/1.73m² and stable creatinine three months before enrollment. Exclusion criteria: infection, bleeding, malignancy, systemic or liver disease, immunosuppression, renal replacement therapy. CKD without anemia-inclusion criteria: over 18 years, no anemia or treatment for anemia, CKD with stable creatinine values three months before enrollment. Exclusion criteria: medical conditions known to have a role in the development of polycythemia. Hepcidin-25 and ferritin were measured by ELISA method. Erythropoietin (EPO), tumor necrosis factor (TNF)- α , interleukin (IL)-6 were evaluated using chemiluminescent enzyme immunometric assays. Unpaired T test, Pearson correlation and multiple regression were used for statistical analysis. **Results:** Hemoglobin values were significantly lower in anemia group. There were no differences in terms of eGFR, age, body mass index, serum hepcidin, erythropoietin, fibrinogen, IL-6, and TNF- α between CKD patients with and without anemia. Serum hepcidin correlated positively with ferritin ($r=0.45$ $p<0.05$), TNF- α ($r=0.54$, $p<0.05$) and negatively with erythropoietin ($r=-0.51$, $p<0.05$). Multiple linear regression analysis demonstrated that TNF- α is an independent predictor of serum hepcidin in our patients ($p=0.003$, $R=0.71$). **Conclusion:** We found no differences in serum hepcidin, erythropoietin and inflammatory markers in non-dialysis CKD patients with and without anemia.

Keywords: hepcidin-25, TNF- α , IL-6, erythropoietin, anemia, non-dialysis chronic kidney disease

Received 25 October 2016 / Accepted 27 December 2016

Introduction

Anemia is a common problem in chronic kidney disease (CKD) patient. Previous studies demonstrated prevalence rates of anemia in CKD up to 47.7% and that glomerular filtration rate, age, gender, race, comorbidities are predictors of CKD anemia. [1,2,3]

Most authors postulated that the prevalence of anemia increases with decreasing glomerular filtration rate in both genders. [4,5]

CKD anemia is a multifactorial process. Erythropoietin deficiency, iron metabolism disorders, uremic toxins, shortened red cell survival, blood loss on hemodialysis sessions or due to repeated blood sampling, lack of essential nutrients like folic acid and vitamin B12, inflammation are involved in CKD anemia. [6,7,8]

Considering the large number of possible etiological conditions, treatment of anemia is sometimes a difficult task for the practitioner.

Recent discovery of hepcidin, considered to be the most important regulator of circulating iron absorption was fol-

lowed by research to prove her role in the etiology of anemia in chronic kidney disease. [9,10]

Moreover, serum hepcidin concentrations are influenced by inflammation and anemia of chronic kidney disease is often explained by the marked inflammatory status of these patients. [11,12]

In this setting, knowledge of the interplay between hepcidin, serum erythropoietin, inflammatory markers and glomerular filtration rate is a goal for nephrologists. Understanding the relationship between parameters would help us both to understand which categories of patients frequently develop anemia but also to answer an old question about different response to therapy of patients with chronic kidney disease anemia.

The purpose of our study was to compare hepcidin and inflammation markers in CKD patients with and without anemia and to assess the relationship with glomerular filtration rate, serum erythropoietin and inflammatory markers as fibrinogen, hsCRP, IL-6 and TNF- α .

Methods

The study was approved by local ethical board and was conducted according to the Declaration of Helsinki. All

* Correspondence to: Dorin Ionuț Tarta
E-mail: nefrologie@yahoo.ro

patients signed an informed consent for plasma sample collection and for the participation in the research.

Study population

Incident chronic kidney disease (CKD) patients referred for medical evaluation in the Nephrology Department of Mures County Clinical Hospital between March 2015 - June 2016 with the diagnosis of chronic kidney disease.

We considered eligible for the study two types of patients

1. Anemia group. Inclusion criteria: over 18 years, hemoglobin \leq 12 g/dl for women and \leq 13 g/dl for men, no treatment for anemia at least 6 months before enrolment, estimated glomerular filtration rate (eGFR) $<$ 60 ml/min/1.73 mp and stable creatinine values three months before enrolment, ferritin $<$ 300 ng/ml. Exclusion criteria: infection, bleeding, malignancy, systemic or liver disease, immunosuppression, MCV higher than 100 fl, renal function replacement therapy.
2. No anemia group. Inclusion criteria: over 18 years, hemoglobin $>$ 12 g/dl for women and $>$ 13 g/dl for men, no treatment for anemia at least 6 months before enrolment, estimated glomerular filtration rate (eGFR) $<$ 60 ml/min/1.73 mp and stable creatinine values three months before enrolment. Exclusion criteria: medical conditions known to have a role in the development of polycythemia: chronic obstructive pulmonary disease, sleep apnea, morbid obesity, cardiovascular diseases with right-to-left shunt, renal carcinomas, adrenal carcinomas, hepatomas, adrenal adenomas.

Laboratory data

Blood samples were collected after an overnight fast, between 8:00 and 9:00 in the morning. Hemoglobin, hematocrit, serum creatinine was performed during routine examinations performed in the clinic.

For hepcidin, ferritin, erythropoietin and inflammatory markers assay, serum samples were stored at -80°C. Sample analysis was performed in the same session by the same examiner. Hepcidin-25 was measured by a immunoenzymatically colorimetric method (DRG® Hepcidin 25 bio-active ELISA, DRG International, Inc., USA) according to manufacturer's indication, with an analytical sensitivity equal to 0.135 ng/ml.

For erythropoietin (EPO), tumor necrosis factor (TNF)- α , interleukin (IL)-6 assay we used a chemiluminescent enzyme immunometric assay (on a Siemens, Germany, Immulite1000 analyzer). Analytical sensitivity was 2 pg/ml for IL-6 assay, 1,7 pg/ml for TNF-alpha, 0.24 mIU/ml for EPO.

Ferritin concentrations were measured with an immunoenzymatically colorimetric method (ELISA Novatec Immundiagnostica GmbH, Dietzenbach, Germany), with an analytical sensitivity of 0.04 ng/ml.

Estimated glomerular filtration rate (eGFR) was calculated using 4-variable Modification of Diet in Renal Disease equation.

Statistical analysis

Statistical analysis was realized using GraphPad Prism 6 Software. Data were presented as mean \pm standard deviation.

Differences between groups were evaluated with unpaired Student's t test.

Pearson test was used to verify the existence of correlations between parameters for data with Gaussian distribution and Spearman test was used for variables with non-Gaussian distribution.

Agostino- Pearson normality test was used to verify if values come from a Gaussian distribution. For regression models variables with non- normal distribution were logarithmically transformed.

Results

22 patients with chronic kidney disease anemia (14 females and 8 males) and 15 patients with CKD without anemia (6 females and 9 males) were investigated in the study.

In anemia group, hemoglobin values were significantly lower compared with patients without anemia. Mean age (standard deviation) was 59.55 ± 3.091 for the group with anemia and 62.87 ± 3.205 for the non-anemia group, with no significant differences between age groups. (Table 1)

There were no differences in terms of the mean glomerular filtration rate and body mass index between the two groups (Table 1).

We found no differences in serum hepcidin, erythropoietin, fibrinogen, IL-6, and TNF- α between CKD patients with and without anemia. Serum iron, TSAT, ferritin and (mean corpuscular volume) MCV showed no differences between the two groups. (Table I)

Table I. Clinical and laboratory parameters in patients with CKD

Parameter	Anemia group	Non-anemia group	P
eGFR (ml/min/1.73 mp)	23.75 ± 2.789	27.82 ± 2.882	NS
Hepcidin 25 (ng/ml)	30.48 ± 5.959	27.52 ± 4.405	NS
Body mass index (kg/mp)	27.93 ± 0.9404	30.15 ± 1.105	NS
Fibrinogen (mg/dl)	370.2 ± 28.25	377.7 ± 29.80	NS
Erythropoietin (mIU/mL)	11.12 ± 1.444	10.29 ± 1.084	NS
Age (years)	59.55 ± 3.091	62.87 ± 3.205	NS
TSAT (%)	21.88 ± 1.656	20.65 ± 2.183	NS
TNF- α (pg/mL)	11.45 ± 1.087	11.36 ± 1.101	NS
Ferritin (ng/mL)	86.07 ± 14.32	51.98 ± 9.612	NS
IL-6 (pg/mL)	5.14 ± 1.16	13.87 ± 7.95	NS
Hemoglobin (g/dl)	10.41 ± 0.267	13.84 ± 0.298	$p < 0.0001$
MCV (fl)	85.93 ± 1.606	86.21 ± 1.411	NS
hsCRP (mg/L)	5.980 ± 1.063	8.920 ± 3.235	NS
Serum iron (μ g/dL)	59.18 ± 5.125	59.50 ± 5.578	NS

Correlation analyses for all patients showed that serum hepcidin correlated positively with ferritin ($r=0.45$ $p<0.05$) and TNF- α ($r=0.54$, $p<0.05$). Hepcidin correlated negatively with erythropoietin ($r=-0.51$, $p<0.05$). We found no correlation between serum hepcidin and hemoglobin, iron, hsCRP, IL-6, fibrinogen and eGFR in our patients.

Multiple linear regression analysis for the whole population studied, with hepcidin as dependent and ferritin, erythropoietin and TNF- α as independent variables demonstrated that TNF- α is an independent predictor of serum hepcidin in our patients ($p=0.003$, $R=0.71$).

Discussion

Chronic kidney disease is a serious medical condition that evolves with numerous complications that reduces lifespan significantly. As filtration rate decreases, the prevalence of complications like cardiovascular disease, hyperparathyroidism or anemia increases significantly. [3] These big issues and spread in the population makes chronic kidney disease to be extensively studied in order to decrease associated comorbidities.

One important aspect of the disease is anemia. It is known that its prevalence increases with decreased glomerular filtration rate, charging the health care systems with huge costs. [13]

Chronic kidney disease anemia is a multifactorial process. Uremic milieu, low folate and B12 vitamin, malnutrition and inflammation are important causes of anemia. To these we can add frequent blood sampling in hospital setting or loss of blood in the hemodialysis circuit. Low erythropoietin production by the diseased kidney and disorders of iron metabolism are recognized as the main causes of anemia in chronic disease. [14,15]

Hepcidin is a relatively recently discovered molecule. The main function of hepcidin is to regulates iron absorption by binding to ferroportin, the only element involved in cellular iron export. [16]

The main site of production is the liver; hepcidin expression depends on iron stores but also by endogenous and exogenous EPO, infection, inflammation and hypoxia. [17]

Nephrologists community consider that hepcidin is an important issue because understanding its role in anemia of chronic kidney disease could provide important details on therapy.

This study focuses on characterizing of serum hepcidin profile in CKD patients with and without anemia and also on characterizing the relationship between hepcidin, glomerular filtration rate, endogenous EPO and inflammatory markers as fibrinogen, hsCRP, IL-6 and TNF- α .

We studied patients in whom history, clinical and para-clinical examination, has ruled out active infections or obvious causes of inflammation (see inclusion and exclusion criteria). Also, there were no significant differences in terms of age and glomerular filtration rate between the two groups of patients, to eliminate the possible impact of this parameters on serum hepcidin values.

Some authors demonstrated a negative correlation between serum hepcidin and glomerular filtration rate in CKD patients. [18,10]

Although this claim is not accepted by all nephrologists, in CKD serum hepcidin values are raised compared to the general population; it is also demonstrated a significant increase in hepcidin in hemodialysis patients. [19-22]

Previous studies demonstrated that patients with chronic kidney disease have increased plasma hepcidin levels and that patients with absolute iron deficiency have lower levels of hepcidin, the latter being considered a marker that can differentiate the anemia of chronic iron deficiency anemia. [23,24]

In our study, hemoglobin levels were different ($p<0.0001$) but hepcidin values were not different in anemia compared with non-anemia patients.

One possible explanation is lack of significant differences in terms of serum iron. Also, iron deficiency has not been a feature of the two groups studied and this may have influenced our results. Hepcidin expression is dictated by the body iron load [25]; and at comparable iron concentrations serum hepcidin values can also be comparable.

In these conditions, why some patients experience low hemoglobin values and others do not?

The question is even more present given that we demonstrated in the two groups of patients amounts of erythropoietin, IL-6 and TNF- α who do not show significant differences.

CKD anemia is a condition is a condition thought to be caused primarily by a lack of erythropoietin. Conversely, we would expect that patients without anemia present elevated serum erythropoietin.

Fehr et al found negative correlation between EPO and hemoglobin for a creatinine clearance above 40 mL / min. The author did not show a significant correlation below this clearance (despite a high rate of anemia) suggesting a lower set point for erythropoietin regulation. [26]

In a recent analysis of determinants of EPO in CKD, Mercadel et al postulated that CKD is characterized by early relative EPO deficiency, but several factors besides hemoglobin may persistently stimulate EPO synthesis ensuring normal hemoglobin levels in patients with measured GFR above 30 ml/min/ 1.73 mp. [27]

For both our groups mean glomerular filtration was under 30 ml/min/ 1.73 mp but with the specification that we used estimated and not measured glomerular filtration rate.

In our study, hepcidin correlated positively with ferritin. This correlation is the only one supported by all authors and it seems logical because the main regulator of hepcidin is the body's iron reserves. [28,29]

The fact that chronic kidney disease is a proinflammatory status that worsens as declining glomerular filtration is now universally accepted. [30,31]

Hepcidin production is directly regulated by proinflammatory cytokines. Nemeth et al demonstrated that hepcidin

din is induced by IL-6 in human hepatocyte culture, and this response is rapidly followed by hypoferremia. [32]

Even if hepcidin expression is up-regulated by IL-6, CKD clinical studies are not consistent in supporting the correlation between hepcidin and IL-6. [33,34]

The negative correlation between EPO levels and hepcidin was an expected result; increased erythropoiesis requires a low hepcidin concentration that will allow absorption of iron needed to restore erythrocyte. [35]

Similar evidence was obtained recently regarding anemia in acute and chronic inflammatory processes where hepcidin- independent effects of inflammation on the suppression of erythropoiesis were demonstrated. [36]

In our study on non-dialysis chronic kidney disease, multiple regression analysis showed that TNF- α was the main predictor of hepcidin levels.

Inflammatory cytokines have active roles in influencing hepcidin expression. It is known that IL-6 has an important role in stimulating hepcidin but little are known about the direct influence of TNF- α .

Studies in rheumatoid arthritis patients showed that administration of TNF- α inhibitors reduced serum hepcidin-25 but the mechanisms are largely unknown. [37]

Our study limits are: limited number of patients, estimation of the glomerular filtration rate, that patients were not divided depending on the stage of chronic kidney disease.

In conclusion, our study has demonstrated lack of significant differences in terms of hepcidin profile and inflammatory markers in patients with CKD anemia compared to patients with CKD without anemia.

Hepcidin-25 does not correlate with glomerular filtration in non-dialysis chronic kidney disease and TNF- α was the main predictor of hepcidin-25 levels.

We conclude that hepcidin, iron markers, erythropoietin and inflammatory markers cannot fully explain chronic kidney disease anemia.

Chronic kidney disease anemia might be a more complex matter than we previously thought and further studies are necessary for provide the whole mechanism and to understand the role of hepcidin in iron metabolism in patients with CKD.

Acknowledgements and funding

Financial disclosure: Carmen Caldăraru, Grigore Dogaru: honoraria for speaking, Abbott Laboratoires. No other financial or nonfinancial relationships to disclose

This work was supported by Universitatea de Medicina și Farmacie Targu Mures under Grant No 639/16.01.2015.

Conflict of interest

None to declare.

References

1. Gilbertson D, Peng Y, Bradbury B, Ebben J, Collins A. Hemoglobin level variability: anemia management among variability groups. *Am J Nephrol*. 2009; 30: 491-498.
2. McClellan W, Aronoff S, Bolton W, Hood S, Lorber D, Tang K, et al. The prevalence of anemia in patients with chronic kidney disease. *Curr Med Res Opin*. 2004; 20: 1501-1510.
3. Astor B, Muntner P, Levin A, Eustace J, Coresh J. Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988-1994). *Arch Intern Med*. 2002; 162: 1401-1408.
4. Kohagura K, Tomiyama N, Kinjo K, Takishita S, Iseki K. Prevalence of anemia according to stage of chronic kidney disease in a large screening cohort of Japanese. *Clin Exp Nephrol*. 2009; 13: 614-620.
5. Stauffer E, Fan T. Prevalence of anemia in chronic kidney disease in the United States. *PLoS ONE*. 2014; 9: pe84943.
6. Eschbach J. The anemia of chronic renal failure: Pathophysiology and the effects of recombinant erythropoietin. *Kidney Int*. 1989; 35: 134-148.
7. Zadrazil J, Horak P. Pathophysiology of anemia in chronic kidney diseases: A review. *biomed Pap Med Fac Univ Olomouc Czech Repub*. 2015; 159: 197-202.
8. Babbitt J, Lin H. Mechanisms of anemia in CKD. *J Am Soc Nephrol*. 2012; 23: 1631-1634.
9. Wagner M, Ashby D. Hepcidin—a well-known iron biomarker with prognostic implications in chronic kidney disease. *Nephrol Dial Transplant*. 2013; 28: 2936-2939.
10. Atkinson M, Kim J, Roy C, Warady B, White CT, Furth S. Hepcidin and risk for anemia in CKD: a cross-sectional and longitudinal analysis in the CKD Cohort. *Pediatr Nephrol*. 2015; 30: 635-643.
11. Chonchol M, Lippi G, Montagnana M, Muggeo M, Targher G. Association of inflammation with anaemia in patients with chronic kidney disease not requiring chronic dialysis. *Nephrol Dial Transplant*. 2008; 23: 2879-2883.
12. Gupta J, Mitra N, Kanetsky P, Devaney J, Wing M, Reilly M, et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. *Clin J Am Soc Nephrol*. 2012; 12: 1938-1946.
13. Bruck K, Stel V, Gambaro G, Hallan S, Volzke H, Arnloy J, et al. CKD prevalence varies across the European general population. *Am J Soc Nephrol*. 2015; 27.
14. Chiang C, Tanaka T, Inagi R, Fujita T, Nangaku M. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. *Lab Invest*. 2011; 91: 1564-1571.
15. Al-Khoury S, Afzali B, Shah N, Thomas S, Gusbeth-Tatomir P, Goldsmith D, et al. Diabetes, kidney disease and anaemia: time to tackle a troublesome triad? *Int J Clin Pract*. 2007; 61: 281-289.
16. Ramey G, Deschemin J, Durel B, Canonne-Hergaux F, Nicolas G, Vaulont S. Hepcidin targets ferroportin for degradation in hepatocytes. *Haematologica*. 2010; 95: 510-504.
17. Tsuchiya K, Nitta K. Hepcidin is a potential regulator of iron status in chronic kidney disease. *Therapeutic Apheresis and Dialysis*. 2013; 17: 1-8.
18. Trout J, Butterfield A, Konrad R. Hepcidin-25 concentrations are markedly increased in patients with chronic kidney disease and are inversely correlated with estimated glomerular filtration rates. *J Clin Lab Analysis*. 2013; 27: 504-510.
19. Weiss G, Theurl I, Eder S, Koppelstaetter C, Kurz K, Sonnweber T, et al. Serum hepcidin concentration in chronic haemodialysis patients: associations and effects of dialysis, iron and erythropoietin therapy. *Eur J Clin Invest*. 2009; 39: 883-890.
20. Malyszko J, Malyszko J, Pawlak K, Mysliwiec M. Hepcidin, iron status and renal function in chronic renal failure, kidney transplantation and hemodialysis. *Am. J. Hematol*. 2006; 81: 832-837.
21. Uehata T, Tomosugi N, Shoji T, Sakaguchi Y, Suzuki A, Kaneko T, et al. Serum hepcidin-25 levels and anemia in non-dialysis chronic kidney disease patients: a cross-sectional study. *Nephrol. Dial. Transplant*. 2012; 27: 1076-1083.
22. Peters H, Laarakkers C, Swinkels D, Wetzel J. Serum hepcidin-25 levels in patients with chronic kidney disease are independent of glomerular filtration rate. *Nephrol. Dial. Transplant*. 2010; 25: 848-853.
23. Lukaszuk E, Lukaszuk M, Koc-Zorawska E, Tobolczyk J, Bodzenta-Lukaszuk A, Malyszko J. Iron status and inflammation in early stages of chronic kidney disease. *Kidney Blood Press Res*. 2015; 40: 366-373.
24. Mercadel L, Metzger M, Haymann J, Thervet E, Boffa J, Flamant M, et al. The relation of hepcidin to iron disorders, inflammation and hemoglobin in chronic kidney disease. *PLoS One*. 2014; 9: e99781.
25. Young B, Zaritsky J. Hepcidin for clinicians. *Clin J Am Soc Nephrol*. 2009; 4: 1384-1387.
26. Fehr T, Ammann P, Garzoni D, Korte W, Fierz W, Rickli H, et al. Interpretation of erythropoietin levels in patients with various degrees of renal insufficiency and anemia. *Kidney Int*. 2004; 66: 1206-1211.

27. Mercadel L, Metzger M, Casadevall N, Haymann J, Karras A, Boffa J, et al. Timing and determinants of erythropoietin deficiency in chronic kidney disease. *Clin J Am Soc Nephrol.* 2012; 7: 35-42.

28. Camaschella C. Iron-deficiency anemia. *N. Engl. J. Med.* 2015; 372: 1832- 1843.

29. Ganz T, Nemeth E. Hepcidin and iron homeostasis. *Biochim Biophys Acta.* 2012; 1823: 1434-1443.

30. Rao M, Wong C, Kanetsky P, Girndt M, Sternvinkel P, Reilly M, et al. Cytokine gene polymorphism and progression of renal and cardiovascular diseases. *Kidney Int.* 2007; 72: 549-556.

31. Pecoits-Filho R, Lindholm B, Axelsson J, Stenvinkel P. Update on interleukin-6 and its role in chronic renal failure. *Nephrol Dial Transplant.* 2003; 18: 1042-1045.

32. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen B, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. *J Clin Invest.* 2004; 113: 1271-1276.

33. Yang L, Zhang P, Tang F, Wang F, Li E. Correlation between hepcidin level and renal anemia. *Genet Mol Res.* 2014; 13: 7407-7410.

34. Jairam A, Das R, Aggarwal P, Kohli H, Gupta K, Sahuja V, et al. Iron status, inflammation and hepcidin in ESRD patients: The confounding role of intravenous iron therapy. *Indian Journal of Nephrology.* 2010; 20: 125-131.

35. Gammella E, Diaz V, Recalcati S, Buratti P, Samaja M, Dey S, et al. Erythropoietin's inhibiting impact on hepcidin expression occurs indirectly. *Am J Physiol Regul Integr Comp Physiol.* 2015; 308: R330-R335.

36. Langdon J, Yates S, Femnou L, McCranor B, Cheadle C. Hepcidin-dependent and hepcidin-independent regulation of erythropoiesis in a mouse model of anemia of chronic inflammation. *Am J Hematol.* 2014; 470-479.

37. Song S, Iwahashi M, Tomosugi N, Uno K, Yamana J, Yamana S, et al. Comparative evaluation of the effects of treatment with tocilizumab and TNF- α inhibitors on serum hepcidin, anemia response and disease activity in rheumatoid arthritis patients. *Arthritis Res Ther.* 2013; 15: R141.

RESEARCH ARTICLE

The Prevalence of Dysphotopsia in Patients with Recent Cataract Surgery

Andreea Dana Fișuș^{1*}, Zoltán Madaras¹, Karin Ursula Horváth^{1,2}

¹ Tîrgu Mureș County Hospital, Ophthalmology Clinic

² University of Medicine and Pharmacy Tîrgu Mureș

Pseudophakic dysphotopsia are becoming increasingly important as unwanted side effect after cataract surgery. **Objective:** The purpose of this study is to compare the photic symptoms experienced by patients after cataract surgery. **Material and method:** This is a prospective study that included 105 eyes from 99 patients, which underwent uncomplicated phacoemulsification and IOL implantation, between June 2015 and June 2016, performed at Ophthalmology Clinic Tg Mureș. Patients without visually consequential ocular co-morbidity completed a questionnaire, designed to assess subjectively perceived visual functioning and identify symptoms of dysphotopsia. **Results:** From the total number of patient, hydrophobic lenses were implanted in 95 patients and 10 patients received hydrophilic lenses. Photic effects were reported in 18% of treated eyes. Although the percentage of dysphotopsia is higher in the hydrophobic lenses category, there was no significant statistical difference between the two categories. **Conclusion:** The incidence and significance should not be overlooked, thus visual acuity is not enough for evaluating postoperative visual function.

Keywords: dysphotopsia, glare, survey, cataract, intraocular lens

Received 17 August 2016 / Accepted 27 December 2016

Introduction

The major concerns, nowadays in cataract surgery, are enhancing vision and retina protection against light toxicity. [1-5]

With all the advances in the intraocular lens design, that have improved visual outcome, patient often complain of optical side effects known as dysphotopsia. [4-12]

Negative dysphotopsia represent the absence of vision in the temporal region, located at 20° from the center, whilst positive dysphotopsia, the presence of glare, halo, or streaks of light. [5,8,-16] Negative dysphotopsia is a more enigmatic symptom.

Glare is caused by the interaction between the stray light and refractive media leading to a reduced contrast sensitivity. [12,17,18] Halos (discs of light) are usually perceived in bright light, or foggy weather. [9,16] Thus patient can experience an interference with their mundane activities.

These unpleasant ocular symptoms can appear as early as one week postoperative, and last up to several months. [8,11,13,14]

The mechanism in which this phenomenon is produced is still a matter of much controversy; factors pertaining to lens design are currently debated.

On the one hand these symptoms can often be caused by the optic shapes and diameters of the intraocular lens, current studies shown higher incidence of dysphotopsia correlated with sharp-edge optical design. [5,12,14,17-19] Thus negative photopsia is produced by parallel rays of light that pass thru the lenses edge resulting into two

divergent rays that project onto the retina, creating a temporal shadow.[8,10,13,14]

Another possible explanation of dysphotopsia is the interaction between the optical pathway of the eye and the intraocular lens, the mechanism is the reflection of light rays between the optic edge and the anterior capsulorhexis; irrespective of intraocular lens material, nevertheless increased anterior chamber is also known for inducing negative dysphotopsia [4,6,7,9,14]

The use of acrylic copolymers as lens material, can also impact the incidence of dysphotopsia.

Hydrophilic acrylic lenses have higher water content than hydrophobic ones, which lead to a higher incident of capsular opacification and a lower incident of dysphotopsia. The higher water content compared of hydrophilic lenses lead to a lower refractive index. A high refractive index is known to cause dysphotopsia.

Aspheric intraocular lenses improve vision by reducing the optical aberration, especially spherical aberration at the retina. These lenses generate a degree of negative spherical aberration thus compensating the positive spherical aberration induced by the cornea. [6,19-22]

Studies show that the blue light-filtering yellow chromophore in some hydrophilic lenses can reduce the effect of positive dysphotopsia, without affecting color vision. [16-19] The blue light filtering lenses can improve vision by enhancing contrast, where initially designed to protect the retina from phototoxicity. [16,18,21]

Majority of unpleasant symptoms are transient, thus the “watchful waiting” is the best solution in many cases. Although the majority of symptoms fade in time due to neuroadaptation, if symptoms persist, some measures should

* Correspondence to: Andreea Dana Fișuș
E-mail: fisusandreea@yahoo.com

be taken: first of all eliminating any refractive error with spectacles, then proper diagnosis of dry eye, thus leading to treatment, the use of thick framed glasses may be of use, so is the intermittent use of pupillary dilatation. [3,5,8,13,14]

There is a percentage of 1-2% of patients who present with debilitating, prolonged symptoms, for whom additional surgery may be the solution. Treatment options cited by the current literature are: anterior laser capsulotomy, reverse optic capture, piggy-back intraocular round edge lens in sulcus (reducing the space behind the iris), or iris suture fixation of the capsular bag and lens complex, thus covering or eliminating the anterior capsule. In extreme cases, with debilitating symptoms, lens exchange is discussed. [3-5,8,12-14,18]

The purpose of our study is to determine the incidence of dysphotopsia compared to the type of intraocular lens and examine if there is a correlation between patient satisfaction and the presence of dysphotopsia.

Material and Method

This is a prospective, observational study that included 105 eyes from 99 patients that underwent uncomplicated phacoemulsification and IOL implantation, between June 2015 and June 2016, performed at Ophthalmology Clinic Tîrgu Mureș.

There is no objective test to diagnose the presence of dysphotopsia

Surgery

The surgery was performed by two surgeons using the same method, with similar visual outcome. Uneventful standard phacoemulsification was performed; all eyes received an acrylic single-piece intraocular lens in the capsular bag.

Participants

The patients were divided into categories, based on the IOL type implanted, hydrophilic lenses (Medicontur 640AB and 640ABY) and hydrophobic ones (AcrySof SN60WF and SA60AT). Due to the fact that aspheric lenses have a reduction in optical aberration compared to spherical ones, we only included in the questionnaire phase aspheric acrylic lenses.

The exclusion criteria applied were:

- preoperative condition: retinal or optic nerve damage (macular degeneration, glaucoma neuropathy), corneal or vitreous opacities, amblyopia, corneal astigmatism over 1,25 diopter, dry eye, traumatic cataract, other pathologies that can influence the comprehen-

sion of the questionnaire (Alzheimer's disease)

- intraoperative complications (capsular rupture, IOL out of the capsular bag),
- postoperative complications: corneal oedema, significant inflammation, tilted intraocular lens, best corrected vision under 0.1 – unexpected vision loss, cystoid macular oedema, refractive errors (>1,00 spherical diopter, or astigmatism). [4,7,19,23]

Questionnaire

This study was designed to evaluate the photic phenomena from the perspective of subjective multiple question questionnaire, participants were surveyed at the two week post-operative examination. The questionnaire used was a validated questionnaire described in previous studies. [17,23] A single investigator performed all the questionnaires

Our primary outcome measured was regarding patient satisfaction, followed by uncorrected/corrected visual acuity (measured using Sneller chart) and glass independence.

Subjects that complain about dysphotopsia were asked about the nature of these symptoms, and about the way these affect their life. (Table I.)

Results

The study contained a number of 95 hydrophobic acrylic lenses and 10 hydrophilic lenses.

86% of the respondents were satisfied with the postoperative vision.

The mean age of patients in the study is 70.33, without a significant difference between the two groups, 63% women and 36% men.

Dysphotopsias reported at the two week follow-up were present in 24.3% of cases, 52.63% of these patients reported the presence of halos and 26.31% complained of temporal shadow.

Patients were asked to rank the severity of their symptoms, as shown in Fig 1. Sever symptoms were not reported.

The mean for best corrected visual acuity, situated between 0.8-1.0 for both groups was 70.14 % (Fig 2.)

In the study 38.29% were within the range of +/- 0.50DSph refraction, and 28.08% within +/- 1,00DSph refraction.

The presence of dysphotopsia was correlated with the degree of postoperative satisfaction as shown in Fig 3.

Discussion

The photic phenomenon is a well known consequence of cataract surgery and pseudophakia. [3,4,8,10,11,13] The

Table I. Questionnaire

Postoperative satisfaction grading	spectacle independence	ease of performing mundane activities (grading)	presence/degree of dysphotopsia	willingness congener ocular surgery
1 dissatisfied	near vision yes/no	driving	0 absent	yes
2/3moderat (neutral)	distance vision yes/no	watching TV/phone/computer	1 minimal (barely notice)	no
4 satisfied		reading book/drug prospectus	2-4 annoying	
5 highly satisfied			5 debilitating	

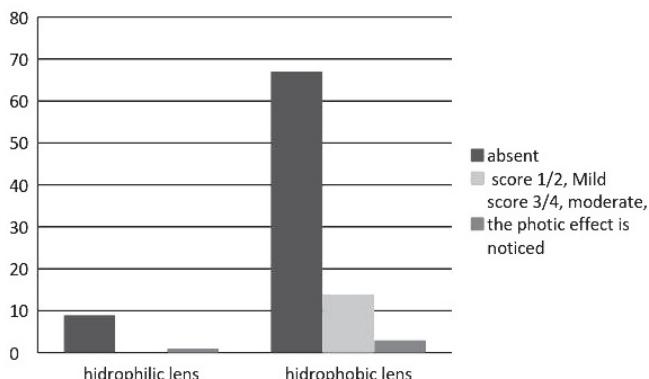


Fig. 1. Grading scale of dysphotopsia

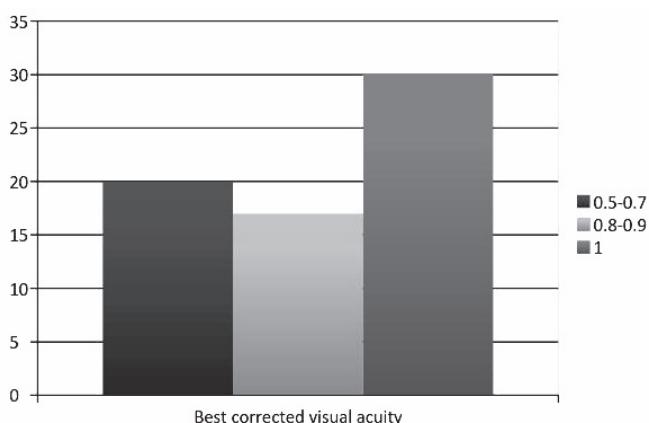


Fig. 2. Postoperative best corrected vision

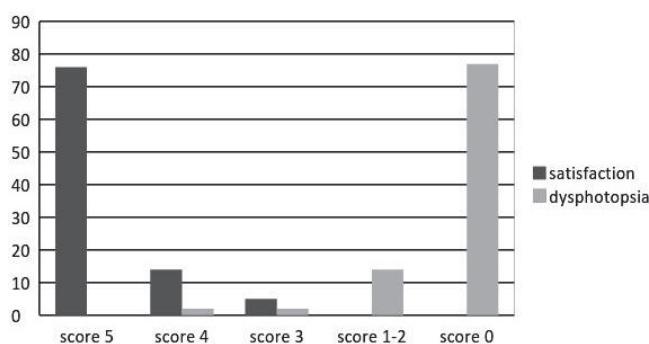


Fig. 3. Patient satisfaction and dysphotopsia presence correlation

simplest way to describe dysphotopsia is that it represent an unwanted patterns on the retina. [5]

The lens visual side effects are reported in the current literature as being between 2 and 18%, with a slight increase for multifocal lenses, were as known, the patients have higher demand. [8,11,13,14,22] The incidence of dysphotopsias in our study is 24.03%, we think that this may be due to our sample size and the phrasing of our question; some questing may have implied an certain answer.

Due to the prevalence of posterior capsule opacification, the study contained more hydrophobic square edge lenses then hydrophilic ones, thus the possible explanation for the high rate of dysphotopsia.

High demand in term of visual outcome, and post-operative satisfaction, make the need of additional chair time. [8,18,22] Thus the postoperative visual acuity is not enough for evaluating the visual function. [5]

Finding these complaints is quite surprising, given that often during the postoperative ocular exam the surgeon finds a good visual acuity. [9,11]

Photic phenomena are produced by two major factor lens geometry and ocular physiology. [5,7,9-14,22]

Theoretically all the lenses are subjected to some degree of dysphotopsia, as long as they are placed in the capsular bag, nevertheless it is known that hydrophilic lenses are the most commonly used, due to the low incidence of dysphotopsia, although the lens material makes it prone for the development posterior capsular opacification. [4,7,20-22]

When conducting a subjective questionnaire, minor changes in the way questions are phrased can change the outcome. We observed when asking broad questions the patients tend not to mention dysphotopsia symptoms, when the questions were explained the number of patients with visual complaints drastically changed. As a result we preferred the direct inquiry. This can also explain the high number of patients with dysphotopsia compared with the high degree of satisfaction.

While we did not find a correlation between the type of intraocular lens implanted, nor the presence of sharp-edge lens, and the presence and severity of dysphotopsia, it is currently known that there is a link, thus additional studies should be conducted.

Due to the careful selection of the patients, one of the weak points of our study is the lack of reaching the statistical significant, we think that this can be solved by enlarging the sample size, and including lenses that are not exact replicas of one another.

What we found interesting is that we did not determine a correlation between the objectified outcome of the patient (presence of dysphotopsia) and patient dissatisfaction. One answer can be that the vision before the surgery was very low, thus making any increase in vision a definite increase in patient satisfaction.

Although many patients experienced some degree of dysphotopsia, only a few reported them as being bothersome, or even mentioned them before the deliberate questioning, thus leading to the conclusion that additional time for postoperative consultation is needed to fully understand the extent of these symptoms. Case by case treatment is required. [9]

After extensive literature review what we found is that with all the studies conducted in this department, there isn't a way to predict who will experience dysphotopsia. [10]

In order to minimize the prevalence of dysphotopsia surgeons should opt for unfinished or frosted lens edge, or materials with low index of reflection. [6,9,12]

In the current state, the surgeon has a wide range of IOL to chose from, as regarding the materials used, refractive and additional profiles, nevertheless, we would like to point out that due to the enigmatic mechanism, patient related factors play an equally important role (idiosyncratic predisposition, prominent globe, shallow orbit) [5,22]

Conclusion

The optical side effects gradually gained ground, being the major postoperative concern.

When choosing the right intraocular lens for the patient it is important to inquire about his/hers daily activities, which can be an indicator about the tolerance of possible dysphotopsia.

Treatment should be adequately timed because the symptoms usually fade in time due to capsular fibrosis, cortical adaptation, or the patient final compromise.

Photic phenomena are produced by two major factor lens geometry and ocular physiology.

Placing the lens haptics horizontally appears to reduce the presence of negative dysphotopsia.

Although hydrophilic lenses have a lower incidence of dysphotopsia than hydrophobic ones, when choosing the right intraocular lens it should be known that hydrophilic lenses have a higher incidence of posterior capsule opacification.

Conflict of interest

None to declare.

References

1. Vlăduțu C, Chiseliță D, Voinea L, Tătaru C, Filip M, Baltă F, et al. Cristalinul, Popescu I, Ciuce C: Tratat de chirurgie. Academia Română, București, 2013;111-195
2. Yanoff M, Duker JS. Cataract: Ophthalmology. Mosby, Spain, 2004, 37:280-282/ Lens replacement 40:293-308/ Patient work-up for cataract surgery 43:327-330
3. Maskit S, Fram N. Pseudophakic negative dysphotopsia: surgical management and new theory of etiology. J Cataract Refract Surg. 2011; 37:1199-1207
4. Jafarinabab MR, Feizi S, Baghi AR, Ziae M, Yaseri M. Aspheric versus Spherical Posterior Chamber, Intraocular Lenses. J Ophthalmic Vis Res. 2010; 5 (4): 217-222
5. Davison JA, Cunha JP, Patel AS, Schwiegerling J, Muftuoglu O. Recent studies provide an updated clinical perspective on blue light-filtering IOLs. Graefes Arch Clin Exp Ophthalmol. 2011; 249:957-968
6. Holladay JT, Zhao H, Reisin C. Negative dysphotopsia: The enigmatic penumbra. J Cataract Refract Surg. 2012; 38(7): 1251-1265
7. Tang Y, Song H, Chen J, Tang X. Comparison of pseudophakic retinal straylight in spherical/aspherical and hydrophobic/hydrophilic intraocular lens. Int J Ophthalmol. 2015; 8(6):1146-1150
8. Makhotkina NY, Berendschot TJM, Beckers HJM, Rudy M, Nuijts A. Treatment of negative dysphotopsia with supplementary implantation of a sulcus-fixated intraocular lens. Graefes Arch Clin Exp Ophthalmol. 2015; 253:973-977
9. Radmall BR, Floyd A, Oakey Z, Olson RJ. Refractive index and its impact on pseudophakic dysphotopsia. Clinical Ophthalmology. 2015; 9:1353-1358
10. Wenzel M, Menapace R, Eppig T, Langenbucher A. Is the Memory Effect of the Blind Spot Involved in Negative Dysphotopsia after Cataract Surgery. Journal of Ophthalmology. 2015; doi.org/10.1155/2015/786579
11. Katsev DA. Dysphotopsia and Multifocal IOLs. CRST. 2012; 5:28-30
12. Pace NL, Samore M, Olson RJ. Dysphotopsia in phakic and pseudophakic patients: Incidence and relation to commonly used intraocular lenses. J Cataract Refract Surg. 2015; 26(6): 810-6
13. Vamosi P, Csakany B, Nemeth J. Intraocular lens exchange in patients with negative dysphotopsia symptoms. J Cataract Refract Surg. 2010; 36(3):418-424, DOI: 10.1016/j.jcrs.2009.10.035
14. Osher RH, Negative dysphotopsia: long-term study and possible explanation for transient symptoms. J Cataract Refract Surg. 2008; 34(10):1699-1707
15. Caceres V. Treating, eliminating negative dysphotopsia. EW. 2014; 19(4):38-40
16. Beiko GHH. A pilot study to determine if intraocular lens choice at the time of cataract surgery has an impact on patient-reported driving habits. Clinical Ophthalmology. 2015;9 :1573-1579
17. Tester R, Olson RJ, Pace LN, Samore M. Dysphotopsia in phakic and pseudophakic patients: Incidence and relation to commonly used intraocular lenses. J Cataract Refract Surg. 2000; 26(6):810-816
18. Hammond BR Jr, Renzi LM, Sachak S, Brint SF. Contralateral comparison of blue-filtering and non-blue-filtering intraocular lenses: glare disability, heterochromatic contrast, and photostress recovery. Clinical Ophthalmology. 2010; 4:1465-1473
19. Guo Y, Li J, Song H, Tang X. Comparison of the Retinal Straylight in Pseudophakic Eyes with PMMA, Hydrophobic Acrylic and Hydrophilic Acrylic Spherical Intraocular Lens. Journal of Ophthalmology. 2014; dx.doi.org/10.1155/2014/340759
20. Li Y, Wang J, Chen Z, Tang X. Effect of Hydrophobic Acrylic versus Hydrophilic Acrylic Intraocular Lens on Posterior Capsule Opacification: Meta-Analysis. 2013; 8(11)doi:10.1371/journal.pone.0077864
21. Xi L, Liu Y, Zhao F, Chen CH, Cheng B. Analysis of glistenings in hydrophobic acrylic intraocular lenses on visual performance. Int J Ophthalmol. 2014; 7(3):446-451
22. van der Linden JW, van der Meulen I, Mourits MP, Lapid-gortzak R. Comparison of a hydrophilic and a hydrophobic apodized diffractive multifocal intraocular lens. Int Ophthalmol. 2013; 33:493-500
23. Vyas A. Incidence of Dysphotopsia in Patients Implanted with the C-flex® Intraocular Lens with 360° Enhanced Edge: A Questionnaire-Based Study. J Clin Exp Ophthalmol. 2015; 6:1. doi.org/10.4172/2155-9570.1000391

RESEARCH ARTICLE

Characteristics of Sleep Apnea Assessed Before Discharge in Patients Hospitalized with Acute Heart Failure

Ildikó Kocsis¹, Lajos Fehérvári¹, Zoltán Fogarasi², István Adorján Szabó¹, Attila Frigy^{1*}

¹ University of Medicine and Pharmacy Tîrgu Mureş, Romania

² Clinical County Hospital Tîrgu Mureş, Romania

Objectives. Evaluation of the characteristics of sleep apnea (SA) in patients hospitalized with acute heart failure, considering that undiagnosed SA could contribute to early rehospitalization. **Methods.** 56 consecutive patients (13 women, 43 men, mean age 63.12 years) with acute heart failure, in stable condition, underwent nocturnal polygraphy before hospital discharge. The type and severity of SA was determined. Besides descriptive statistics, correlations between the severity of SA and clinical and paraclinical characteristics were also analyzed (t-test, chi-square test, significance at alpha < 0.05). **Results.** 12 (21.4%) subjects were free of SA (AHI - apnea-hipopnea index <5/h), 15 (26.7%) had mild SA (AHI=5-14/h), 17 (30.3%) had moderate SA (AHI 15-30/h), and 12 (21.4 %) had severe SA (AHI>30/h). The apnea was predominantly obstructive (32 cases vs. 12 with central SA). Comparing the patients with mild or no SA with those with severe SA, we did not find statistically significant correlations ($p>0.05$) between the severity of SA and the majority of main clinical and paraclinical characteristics – age, sex, BMI, cardiac substrates of heart failure, comorbidities. Paradoxically, arterial hypertension ($p=0.028$) and atrial fibrillation ($p=0.041$) were significantly more prevalent in the group with mild or no SA. **Conclusions.** Before discharge, in the majority of patients hospitalized with acute heart failure moderate and severe SA is present, and is not related to the majority of patient related factors. Finding of significant SA in this setting is important, because its therapy could play an important role in preventing readmissions and improving prognosis.

Keywords: acute heart failure, obstructive sleep apnea, central sleep apnea, prognosis

Received 28 November 2016 / Accepted 11 January 2017

Introduction

The relationship between sleep disordered breathing (SDB), represented by obstructive and central sleep apnea (SA), and cardiovascular diseases has been demonstrated in numerous studies. SDB confers an increased risk for cardiovascular complications and events, playing role in the pathophysiology of resistant hypertension, arrhythmias (from those benign to sudden cardiac death), myocardial ischemia, pulmonary hypertension and heart failure [1-4].

The prevalence of symptomatic obstructive SA in the general population is about 4% in middle-aged men, and 2% in middle-aged women. SDB is common in heart failure (HF), being present in nearly one half of the patients, impairing both the quality of life and prognosis. The specific manifestation is central SA, which is directly related to the level of congestion and functional status [5-7].

Acute HF is a common cause of hospitalizations in the course of HF, moreover, readmissions represent the most predictive factor for poor prognosis and increased mortality. Rehospitalizations within 30 days post-discharge are high, almost one third of patients being involved. The precipitating factors for these admissions are multiple, including cardiac and noncardiac conditions, like myocardial ischemia, arrhythmias, infections, treatment non-compliance, improper medications, etc., and, also, undiagnosed and/or untreated SDB [8-10].

Thus, identifying potential factors related to early readmissions is mandatory. In line with this, the aim of our study was to evaluate the characteristics of SDB in patients hospitalized with acute HF, when already compensated, before hospital discharge. Also, the feasibility of this approach was tested: the yield of routine nocturnal polygraphy for identification of those patients who could benefit from specific treatment of SDB, as a possible tool for preventing rehospitalizations.

Methods

Patient population

We enrolled in the study 56 consecutive patients (13 women, 43 men, mean age 63.12 years) hospitalized with acute HF in the Department of Cardiology of Clinical County Hospital Mureş, between 01.01.2015- 01.06.2016. At the admission, all the patients signed the general consent form used in our institution, agreeing with anonymous data collection and usage for scientific purposes. Approval of local ethical committee (3865/01.03.2016) was obtained for confidential data processing and publication.

Patients who had a severe clinical/hemodynamical instability during the admission, those with marked insomnia and those already on treatment with continuous positive airway pressure (CPAP) therapy for obstructive SA were excluded from data collection.

During the hospital stay, all the patients received an usual care, involving common diagnostic (clinical follow-

* Correspondence to: Attila Frigy
E-mail: afriky@rdslink.ro

up, ECG, chest X-ray, echocardiography, laboratory tests) and therapeutic (oxygen, oral and parenteral medication) procedures. Clinical and paraclinical data were recorded in a custom designed database for further statistical analysis.

In-hospital sleep-study

When in stable clinical condition, as a rule, during the night before discharge, all the patients underwent nocturnal polygraphy (Stardust II®, Phillips Respironics) for assessing the presence and severity of SDB. The device was applied at bedtime by a member of the medical staff, while a trained night shift nurse controlled intermittently the course of registration during nighttime.

Polygraphy involved continuous registration of the following six parameters: nasal airflow, arterial oxygen saturation, heart rate, thoracic movements, body position and snoring. The recordings were edited and corrected manually. The episodes of apnea and hypopnea were defined according to the criteria of American Academy of Sleep Medicine [11, 12]. The overall SDB of the patient was labelled as central or obstructive depending on the predominance (more than 50 % of all episodes) of the central or obstructive events. The level of severity was expressed using the apnea-hipopnea index (AHI) – number of events/hour. Central events also included Cheyne-Stokes respiration, a specific pattern of SA in HF, which was diagnosed when three consecutive cycles of respiration had a crescendo-descrescendo pattern in association with central hipopnea or apnea.

Statistics

We applied descriptive statistics for the characterization of the prevalence, type and severity of SA, while the correlations between SDB severity and diverse clinical and paraclinical parameters were analysed using t-test and chi-square test - statistical significance set at alpha < 0.05 (GraphPad InStat 3.0 software).

Results

The occurrence, severity and type of SA found in our patients are presented in Table I. SDB was present on nocturnal polygraphy performed before hospital discharge at the majority of patients. More than a half of the patients presented moderate or severe forms of SA, the obstructive form being more prevalent (about 2/3 of cases).

To study the correlations between the severity of SA and

Table I The prevalence, severity and type of sleep apnea in the patient population

	AHI <5 nr. of patients (%)	AHI = 5-14 nr. of patients (%)	AHI = 15-30 nr. of patients (%)	AHI>30 nr. of patients (%)
Apnea (total)	12 (21.4%)	15 (26.7%)	17 (30.3%)	12 (21.4%)
Central	-	4 (26.6%)	4 (23.5%)	4 (33.3%)
Obstructive	-	11 (73.3%)	13 (76.4%)	8 (66.6%)

diverse clinical and paraclinical characteristics of the patients, we compared the parameters of two groups – (1) patients with AHI <15/h (mild or no SA), and (2) patients with AHI >30/h (severe SA). The data and results of comparisons are presented in Table II, III and IV.

The two groups were comparable regarding the general characteristics, like age, sex and body mass index (BMI). Also, we did not find statistically significant differences regarding the majority of cardiac substrates, non-cardiac comorbidities and echocardiographic parameters. Paradoxically, two characteristics, the presence of arterial hypertension and atrial fibrillation, proved to be significantly more prevalent in patients with AHI<15/hour. Also, a tendency ($p<0.1$) was observed for older age and higher values of pulmonary artery pressure in the AHI>30/hour group.

Table II Comparison of general parameters in the two groups

Parameter	AHI>30 (12 patients)	AHI<15 (27 patients)	p
Age	*60.67 ± 2.0	63.22 ± 1.9	0.442
Age>65 years	**3 (25%)	15 (18.5%)	0.095
Body mass index	27.87 ± 1.2	28.27 ± 1.2	0.849
Body mass index >30 kg/m ²	4 (33.3%)	8 (29.6%)	1.00
Sex (nr. women/men, %)	1/ 11 (8.3%/91.7%)	7/20 (25.9%/74.1%)	0.393

*for all values: mean ± standard deviation, ** for all values: nr. of patients (%)

Table II Comparison of general parameters in the two groups

Parameter	AHI>30 (12 patients)	AHI<15 (27 patients)	p
Age	*60.67 ± 2.0	63.22 ± 1.9	0.442
Age>65 years	**3 (25%)	15 (18.5%)	0.095
Body mass index	27.87 ± 1.2	28.27 ± 1.2	0.849
Body mass index >30 kg/m ²	4 (33.3%)	8 (29.6%)	1.00
Sex (nr. women/men, %)	1/ 11 (8.3%/91.7%)	7/20 (25.9%/74.1%)	0.393

*for all values: mean ± standard deviation, ** for all values: nr. of patients (%)

Table III Comparison of clinical characteristics in the two groups

Characterstic (cardiac substrates, comorbidities)	AHI>30 (12 patients)	AHI<15 (27 patients)	p
Dilated cardiomyopathy	*5 (41.6%)	14 (51.8%)	0.731
Hypertension	1 (8.3%)	13 (48.1%)	**0.028
Ischemic heart disease	2 (16.6%)	6 (22.2%)	1.00
Atrial fibrillation	0	8 (29.6%)	**0.041
Significant mitral valve regurgitation	6 (50%)	13 (48.1%)	1.00
Severe aortic regurgitation	2 (16.6%)	7 (25.9%)	0.692
Severe aortic stenosis	3 (25%)	3 (11.1%)	0.348
Severe tricuspid regurgitation	4 (33.3%)	11 (40.7%)	0.734
Severe pulmonary hypertension (>60 mmHg)	7 (58.3%)	7 (25.9%)	0.074
Chronic obstructive pulmonary disease	2 (16.6%)	1 (3.7%)	0.219
Diabetes	2 (16.6%)	6 (22.2%)	1.00
Renal dysfunction during admission (creatinine>1.5 mg%)	4 (33.3%)	8 (29.6%)	1.00

*for all values: nr. of patients (%), **statistically significant

Table IV Comparison of echocardiographic parameters in the two groups

Parameter	AHI>30 (12 patients)	AHI<15 (27 patients)	P
Left ventricular (LV) end-diastolic diameter (mm)	* 61.17 ± 2.7	58.00 ± 1.65	0.316
Left ventricle (diastole) >60 mm	**7 (58.3%)	12 (44.4%)	0.487
Left atrial PA diameter (mm)	48.17 ± 1.5	47.83 ± 1.31	0.874
Left atrial PA diameter > 50 mm	6 (50%)	9 (33.3%)	0.4
LV ejection fraction (%)	41.46 ± 4.33	42.79 ± 3.26	0.815
LV ejection fraction <40 %	6 (50%)	14 (51.8%)	1.00
Pulmonary artery systolic pressure (mmHg)	69.09 ± 5.55	55.63 ± 3.95	0.0672

*for all values: mean \pm standard deviation, ** for all values: nr. of patients (%)

Discussion

The pathophysiology of harmful effects of SA in HF is complex and involves haemodynamic, mechanical, humoral, neural, metabolic and inflammatory factors. Obstructive SA induces marked intrathoracic pressure changes, which lead to a higher left ventricular transmural pressure-gradient. SA (both central and obstructive) is characterized by repetitive episodes of hypoxemia/hypercapnia (followed by reoxygenation), which induce oxidative stress and hypoxic pulmonary vasoconstriction. The increase of left ventricular afterload combined with hypoxemia, together with an increase in heart rate and blood pressure (both consequences of sympathetic nervous system activation during arousals) could lead to myocardial ischemia and/or arrhythmias and could trigger acute cardiac decompensations too. The high level of inflammatory mediators (e.g., C-reactive protein) and the oxidative stress determines endothelial dysfunction and metabolic disturbances, which have an important role in atherosclerosis [1, 3, 10].

Several studies demonstrated that up to 40-50% of patients with HF (both with preserved and reduced ejection fraction) suffer from clinically relevant SA, with AHI greater than 15/hour [6, 10, 13]. This fact was confirmed also by our study, we observed a prevalence of moderate/severe SA in about 50% of the patients, the obstructive form being more frequent.

Many observational studies demonstrated, that the occurrence and severity of SA in HF is correlated with several general and specific factors - e.g., age, gender, body mass index, level of congestion, NYHA class, left ventricular ejection fraction, cardiac and non-cardiac comorbidities [1-3, 10]. Comparing the group of patients with no or mild SA with that with severe SA – with two exceptions - we did not find significant differences between the two groups in this regard. The increased prevalence of hypertension and atrial fibrillation in the mild/no SA group could be explained by chance, by the relatively small number of cases. On the other hand, the tendency of increased pulmonary artery pressure in the severe SA group is in line with the literature [1-3].

The feasibility of our approach is supported by the studies of Khayat et al., which demonstrate the value of in-hospital SA testing in the setting of acute heart failure. These data support, that both central and obstructive SA diagnosed during hospital stay are independently related to postdischarge mortality (multivariable hazard ratio 1.61 and 1.53) and hospital readmissions (adjusted rate ratio 1.53 and 1.49) [14-16].

Finding a marked SA at hospital discharge could have multiple significances: (1) persisting congestion (including subclinical) as a contributing factor, (2) poor prognosis regarding mortality and readmissions, and (3) the need to start specific therapy for improving symptoms, quality of life and prognosis. Regarding the latter aspect, presently there exist supporting data only for treatment with CPAP in HF patients with significant obstructive SA [10, 17]. Suppressing central SA by adaptive servo-ventilation is still debated after the worrying results of SERVE-HF trial – increased mortality in the patients on nocturnal non-invasive ventilation [10, 18].

Conclusion

Our data supports the value of predischarge testing for SA in patients hospitalized for acute heart failure. Initiation of specific therapy in the case of finding moderate or severe forms of SA (obstructive) can be an important part of management, having a definite role in preventing readmissions and improving prognosis.

Acknowledgement

This research was partly supported by the Research Grant with private financing - nr.15276/03.11.2015.

Conflict of interest

None to declare.

References

1. Lévy P, Ryan S, Oldenburg O, Parati G - Sleep apnoea and the heart. Eur Respir Rev. 2013;22:333–352.
2. Linz D, Woehrle H, Bitter T, et al. - The importance of sleep-disordered breathing in cardiovascular disease. Clin Res Cardiol. 2015;104:705–718.
3. Vrints H, Shivalkar B, Hilde H, et al. - Cardiovascular mechanisms and consequences of obstructive sleep apnoea. Acta Clin Belg. 2013; 68:169–178.
4. Damiani MF, Zito A, Carratu P, et al. - Obstructive sleep apnea, hypertension, and their additive effects on atherosclerosis. Biochem Res Int. 2015; <http://dx.doi.org/10.1155/2015/984193>
5. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S - The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328:1230–1235.
6. Oldenburg O, Lamp B, Faber L, Teschler H, Horstkotte D, Töpfer V - Sleep-disordered breathing in patients with symptomatic heart failure: a contemporary study of prevalence and characteristics of 700 patients. Eur J Heart Fail. 2007; 9:251–257.
7. Bitter T, Faber L, Hering D, Langer C, Horstkotte D, Oldenburg O - Sleep-disordered breathing in heart failure with normal left ventricular ejection fraction. Eur J Heart Fail. 2009;11:602–608.
8. Gheorghiade M, Bonow RO. - Heart failure: early follow-up after hospitalization for heart failure. Nat Rev Cardiol. 2010;7:422–424.
9. Ponikowski P, Voors AA, Anker SD, et al. - 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure

of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. *Eur J Heart Fail.* 2016;18:891-975.

10. Pearse SG, Cowie MR - Sleep-disordered breathing in heart failure. *Eur J Heart Fail.* 2016;18:353-361.
11. Collop NA, McDowell AW, Boehlecke B, et al. - Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. *J Clin Sleep Med.* 2007;3:737-747.
12. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. *Sleep.* 1999;22:667-89.
13. Punjabi NM - The epidemiology of adult obstructive sleep apnea. *Proc Am Thorac Soc.* 2008;5:136-143.
14. Khayat R, Jarjoura D, Patt B, Yamokoski T, Abraham WT - In-hospital testing for sleep-disordered breathing in hospitalized patients with decompensated heart failure: report of prevalence and patient characteristics. *J Card Fail.* 2009;15:739-746.
15. Khayat R, Abraham WT, Patt B, et al. - Central sleep apnea is a predictor of cardiac readmission in hospitalized patients with systolic heart failure. *J Card Fail.* 2012;18:534-540.
16. Khayat R, Jarjoura D, Porter K, et al. - Sleep disordered breathing and post-discharge mortality in patients with acute heart failure. *Eur Heart J.* 2015; 36:1463-1469.
17. Kaneko Y, Floras JS, Usui K, et al - Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. *N Engl J Med.* 2003;348:1233-1241.
18. Cowie MR, Woehrle H, Wegscheider K, et al. - Adaptive servo-ventilation for central sleep apnea in systolic heart failure. *N Engl J Med.* 2015; 373:1095-1105.

RESEARCH ARTICLE

Kinetics and Mechanism of Drug Release from Loratadine Orosoluble Tablets Developed without Lactose

Adriana Ciurba, Emőke Réda^{*}, Ioana Pop, Paula Antonoaea, Nicoleta Todoran

University of Medicine and Pharmacy Tîrgu Mureş, Romania

Objective: The aim of this study is to develop lactose-free orosoluble tablets with loratadine for patients with lactose intolerance. **Materials and methods:** Seven compositions (F1-F7) of 10 mg loratadine were prepared in form of orally disintegrating tablets, by direct compression, using croscarmellose sodium and pre-gelatinized starch in various concentrations as superdisintegrants, diluted with microcrystalline cellulose and combined with mannitol and maltodextrin as binder agents. The tablets had been studied in terms of their pharmacotechnical characteristics, by determining: the weight uniformity of the tablets, their friability, breaking strength and disintegration time, drug content and the dissolution profile of loratadine. The statistical analyses were performed with GraphPad Prism Software Inc. As dependent variables, both the hardness of the tablets and their disintegration ability differ between batches due to their compositional differences (as independent variables). DDSolver were used for modeling the kinetic of the dissolution processes by fitting the dissolution profiles with time-dependent equations (Zero-order, First-order, Higuchi, Korsmeyer-Peppas, Peppas-Sahlin). **Results:** All proposed formulas show rapid disintegration, in less than 15 seconds, and the dissolution loratadine spans a period of about 10 minutes. Akaike index as well as R² adjusted parameter have demonstrated that the studied dissolution profiles are the best fitted by Zero-order kinetic. **Conclusion:** In conclusion, association of croscarmellose sodium (7.5%) with pre-gelatinized starch (6%) as superdisintegrants and mannitol as the binder agent (35%), positively influences the dissolution properties of loratadine from orally fast dispersible tablets.

Keywords: loratadine, orosoluble, dissolution kinetic, lactose-free, superdisintegrant

Received 22 December 2016 / Accepted 16 January 2017

Introduction

Orosoluble tablets are characterized by enhanced dissolution and release of the active substance compared to conventional pharmaceutical forms. Considering their easy administration, this pharmaceutical form is preferred for children [1,2,3], elder [4] and psychiatry ill [5]. The orally disintegration is attributed to the rapid water penetration into the tablets matrix, which creates a porous structure, and results in a fast disintegration. Considering this, the formulation and development of orosoluble tablets includes the maximization of porous structure of the matrix by incorporating a proper disintegrant and by using highly water soluble excipients [6].

In order to formulate antihistaminic (loratadine) containing tablets for patients with lactose intolerance the following excipients were proposed: Mannitol SD200, maltodextrin and microcrystalline cellulose as diluents, pre-gelatinized starch and croscarmellose sodium as superdisintegrants. In this study, the influence of formulation factors on the pharmacotechnical properties of tablets and the kinetic of the dissolution process were evaluated.

Methods

Materials

Loratadine, Mannitol SD 200, Maltodextrin (*kindly supplied by* Arena Group SA, Romania); Microcrystalline Cel-

lulose NF 101 – Unitab[®], Pre-gelatinized Starch – Lycatab[®], Croscarmellose Sodium – Vivasol[®] (JRS Pharma GmbH & Co. KG, Germany); Silicon Dioxide – Aerosil[®] 200 (Evonik-Degussa GmbH, Germany); Magnesium Stearate, Aspartame, Cloves Aroma (*kindly supplied by* Gedeon Richter Romania SA); Reagents (analysis grade purity).

Apparatus and equipment

Eccentric Tablet Machine, punches of 7 mm diameters (A); Electronic Balance, precision of 0.01/0.1 mg (Kern&Sohn GmbH, Germany); Friability tester (Erweka, Germany); Tablet Hardness Tester (Erweka, Germany); Spectrometer Spektromom 195 D (MOM, Hungary); Dissolution tester type 1 (Erweka, Germany), rotating basket (#60 mesh).

-Preparation of Loratadine- orosoluble tablets: The ingredients were weighed, mixed for 10 minutes, sifted and mixed again in mortar with the help of pastel, without rubbing. The tablet machine was adjusted to achieve tablets of 200 mg weight. The homogenously mix of the ingredient was then directly compressed using a pair of punches of 7 mm diameters. The prepared tablets were kept in tightly closed containers, protected from light and sudden movements, at room temperature (15-25 °C).

-Mass uniformity test: 20 tablets had been accurately weighted and the average mass of a tablet was calculated (M). Same tablets were then individually accurately weighted (M_i). The M_i-M difference was expressed as percentage of M [7].

* Correspondence to: Emőke Réda
E-mail: redai.emoke@umftgm.ro

-*Tablet friability*: 20 tablets of knowing mass (M_{in}) were stirred in the friabilator drum for 4 min (corresponding to 100 rpm), de-dusted and then accurately weighted again (M_{fn}). The difference $M_{in}-M_{fn}$ was expressed as *percentage of M_{in}* [7].

-*Tablet hardness*: 20 tablets were individually crashed in the harness tester, determining for each of them the diametrically pressing force, in newton (N), which crushed the tablet. The tablets hardness was then expressed as the calculated mean force [7].

-*In vitro disintegration test*: 20 tablets were individually kept (not more than 3 min) in 50 mL distilled water, un-stirred and maintained at 37 °C, without stirring. There has been recorded the time (in seconds/ minutes) passed till the tablet was turned into soft mater. The disintegration time was then expressed as the calculated mean time [7].

-*Uniformity of loratadine content test*: 20 tablets were weighed and powdered in mortar rubbing vigorously with the pestle. The powder equivalent to 10 mg of loratadine (»200 mg) was weighed, then extracted by vigorously stirring for 10 minutes in 50 mL of hydrochloric acid 1N and diluted to 100 mL with the same solvent, in volumetric flask. After discarding the first filtered portion, 10.0 mL of filtrate was diluted with hydrochloric acid 0.1N to 25 mL, in a volumetric flask (sample). The absorbance of sample was then determined by spectrophotometry at 280 nm, using the hydrochloric acid 1N as blank. *The calibration curve* was prepared in same conditions, using 10 mg of loratadine (reference substance) dissolved in 1-2 mL of ethanol and diluted to 100 of hydrochloric acid 1N, in volumetric flask (stock solution: 0.1mg loratadine/1mL). The series of etalon solutions was prepared by diluting the stock solution as it follows: 5 mL, 7.5 mL, 10 mL, 15 mL, 20 mL and 25 mL of stock solution were diluted to 25 mL, by adding hydrochloric acid 0.1N, in volumetric flasks. The absorbance of each etalon solution was determined at 280 nm, using the 1N hydrochloric acid as blank [7,8].

-*In vitro dissolution study*: The release rate of loratadine from tablets formulated for orally fast disintegration was determined by the United States Pharmacopeia (USP) method, using a tester similar to apparatus 1 (the rotating basket method) [8]. The test was performed on 6 tablets collected from each batches. Each tablet was individually

introduced in a rotating basket (#60 mesh) and then immersed for 10 minutes in 900 ml hydrochloric acid 1N (media), at 37±0.5 °C and 50 rpm. The sample (5 ml) was withdrawn from the dissolution apparatus at every minute, each time replacing the subtracted solution with fresh dissolution media. The collected samples were filtered through filter paper and then the absorbance of the clear solution was measured by spectrophotometry (at 280 nm), using the hydrochloric acid 1N as blank. *The calibration curve* was prepared in same conditions as it is described above. Loratadine determined as released in media was expressed as percentage of 10 mg (the initial dose of Loratadine in tablet) and then plotted against time to determine the dissolution (release) profile.

Statistical analysis

GraphPad Prism software (GraphPad Software, Inc., v.5 trial demo version [9]) were used for performing: Anova test, Bonferroni multiple comparison, linearization of the curves by regression, calculation of and the descriptive statistical indicators. DDSolver -an Excel Ad in Program [10]- were used for modeling the kinetic of the dissolution processes by fitting the dissolution profiles with time-dependent equations (Zero-order, First-order, Higuchi, Korsmeyer-Peppas, Peppas-Sahlin) and for calculating the goodness of fit parameters (R^2 adjusted coefficient, Akaike index).

Results

Seven compositions (F1-F7) of 10 mg loratadine were prepared in form of orally disintegrating tablets, by direct compression, using croscarmellose sodium and pre-gelatinized starch in various concentrations as superdisintegrants diluted with microcrystalline cellulose and combined with mannitol and maltodextrin as binder agents, as it is shown in Table I. All tablets were in form of small white discs (\varnothing 7 mm), with flat faces and intact edges. After the organoleptic examination, the tablets had been studied in terms of their pharmacotechnical characteristics, by determining: the weight uniformity of the tablets, their friability, breaking strength and disintegration time, and the dissolution profile of loratadine previously assessed as tablet active dose, respectively.

Table I. Composition of the orodispersible tablets

Ingredient (agent type)	Formula / Composition (%)						
	F1	F2	F3	F4	F5	F6	F7
Loratadine (API)	5	5	5	5	5	5	5
Mannitol SD 200 (binder agent)	34.38	34.38	34.38	-	-	20.5	20.5
Maltodextrin (binder agent)	-	-	-	32.5	32.5	12	12
Microcrystalline Cellulose NF 101 (diluent)	46.87	44.37	41.87	48.45	52.45	48.45	52.45
Pre-gelatinized Starch - Lycatab® (superdisintegrant)	6	6	6	4	-	4	-
Croscarmellose Sodium - Vivasol® (superdisintegrant)	5	7.5	10	7	7	7	7
Aerosil® 200 (glidant)	1	1	1	1	1	1	1
Magnesium Stearate (lubricant)	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Aspartame (sweetener)	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Clove Aroma	-	-	-	0.3	0.3	0.3	0.3
Weight = 200 mg ± SD (n=20):	± 0.1%	± 1.0%	± 0.2%	± 0.1%	± 0.8%	± 0.2%	± 0.1%
Loratadine = 10 mg ± SD (n=20):	± 0.7%	± 1.4%	± 2.3%	± 1.0%	± 2.1%	± 0.5%	± 2.7%

Compared to the average mass (experimentally determined) and to the declared active content (established by formulation), the individual weight of tablets had the percentage deviations less than $\pm 1\%$ and the assessed active content less than $\pm 3\%$, $\pm 7.5\%$ being the maximum allowed in both of the cases [7]. In terms of friability, two of the formulations (F4 and F6) do not meet the imposed requirements [7], their friability being greater than 1% (Figure 1).

As dependent variables, both the hardness of the tablets (expressed by the crushing force) and their disintegration ability (expressed by the period of time in which the tablet is transformed in very fine particles) differ between batches due to their compositional differences (as independent variables). The interactions of the two dependent variables can be considered extremely significant ($P < 0.0001$), so that the P values that follow for the row and column effects are difficult to interpret (excepting F4 for which the value of P is > 0.05 , that means an insignificant effect of the interaction). In the same time, both of the dependent variables are

directly affected by the ingredients of the tablets, as these effects are also considered extremely significant ($P < 0.0001$). However, all tablets batches disintegrate without stirring in less than 3 minutes (the maximum admissible limit for this kind of tablets [7])

Although it is supported by a fast disintegration (in less than 15 seconds), the dissolution of loratadine lies on a period of about 10 minutes for all batches, but showing significantly different dissolution profiles that all are perfectly linearized by the simple regression (Figure 2).

In order to prove their linearity, the dissolution curves were supplementary fitted with usual time-dependent kinetic equations (Zero-order, First-order, Higuchi, Korsmeyer-Peppas, Peppas-Sahlin) and in all cases, the Akaike index as well as R^2 adjusted parameter have demonstrated that the studied dissolution profiles are the best fitted by Zero-order kinetic. This means that in all seven cases, the dissolution of loratadine from tablet occurs at a constant rate which is numeric quantified by the value of k_0 - the constant of the implied dissolution process (Figure 3).

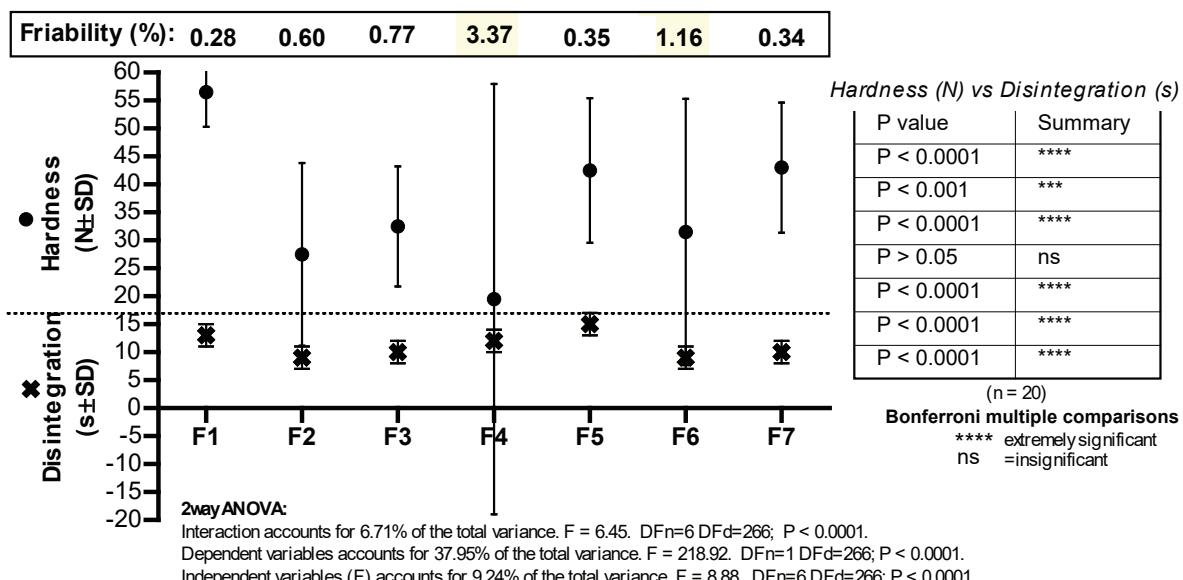


Fig. 1. The mechanical resistance vs. the disintegration ability of the orodispersible tablets

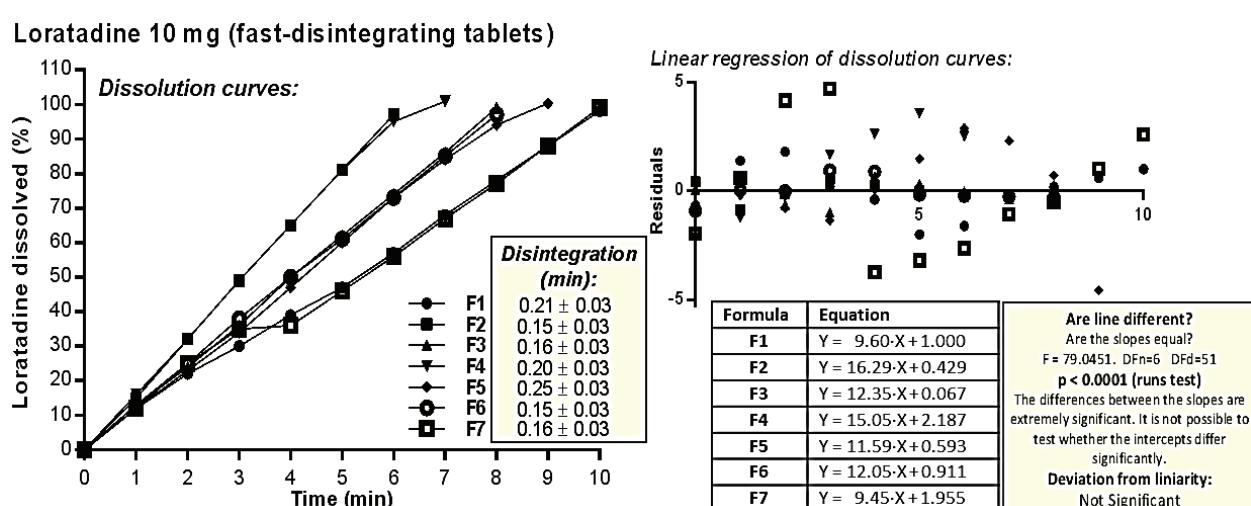


Fig. 2. The dissolution profiles of Loratadine vs. the disintegration time of tablets

The lower value of R^2 adj coefficients indicates that the dissolution process of loratadine from the tablets of F3, F6, F5 and especially F1 and F7 batches, is also accompanied by other kind of processes, possibly due to the associated ingredients which interact into the matrix of the tablet. F2 and F4 batches stand out by their faster dissolution rates, significantly higher than the others (k_0 constants showing the highest values). However, the very poor resistance of F4

tablets (both hardness and friability) determines its exclusion from the consideration. It follows that F2 batch shows the most suitable characteristics for orally administration of tablet and its dispersion: the loratadine dissolution is running steadily from the start (Figure 4) and over all period of at about 6 minutes (when at least 97% of active dose is dissolved), after few seconds of latency (Figure 5), but the kinetic process does not appear to be influenced by the interactions between its associated ingredients.

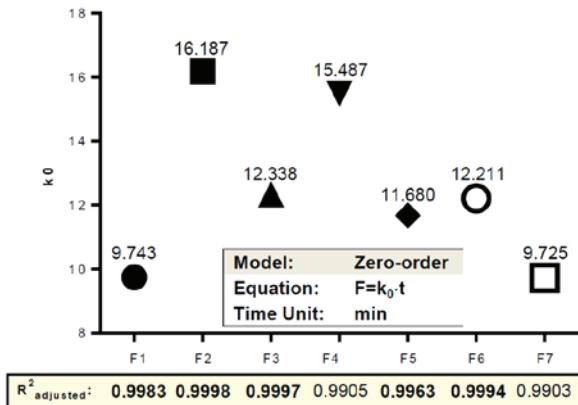


Fig. 3. The degree of curve fitting with Zero-order kinetic (R^2 adjusted) vs. the dissolution rate (k_0)

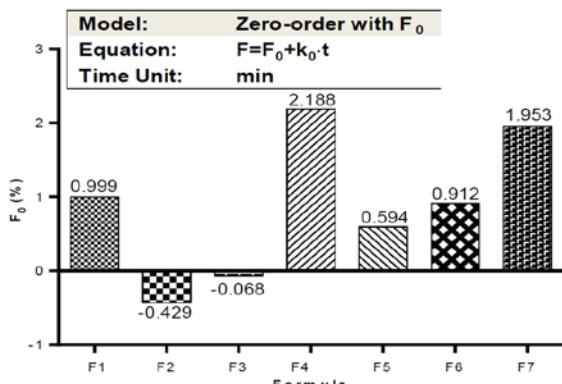


Fig. 4. The burst fraction (F_0) released previous to the dissolution process

Fig. 5. The latency (T_{lag}) with which the dissolution process occurs

Conclusions

Association of croscarmellose sodium (7.5%) with pre-gelatinized starch (6%) as superdisintegrants, positively influences the dissolution properties of loratadine (5%) from orally fast dispersable tablets if mannitol is added as the binder agent (35%). The use of maltodextrin instead of mannitol determines a dramatic decrease, below the level of acceptability, in the hardness of tablets.

Pre-gelatinized starch (4%) associated to maltodextrin (12%) favors the dissolution processes, but only in the presence of mannitol (20%), otherwise the dissolution processes being slowed down. Approximately the same effect is determined if mannitol (35%) is associated to a combination of croscarmellose sodium (5%) and pre-gelatinized starch (6%).

Acknowledgements

This research was carried out with the support of the University of Medicine and Pharmacy of Tîrgu Mureş Romania and the financial support of the ZenPharma SRL Company, through the internal grant 17455/1002/16.12.2014

Conflict of interest

None to declare.

References

- Slavkova M, Breitkreutz J - Orodispersible drug formulations for children and elderly. *Eur J Pharm Sci.* 2015;5:2-9.
- Ernest TB, Craig J, Nunn A, et al - Preparation of medicines for children - A hierarchy of classification. *Int J Pharm.* 2012;435:124-130.
- Stoltenberg I, Breitkreutz J - Orally disintegrating mini-tablets (ODMTs) - A novel solid oral dosage form for pediatric use. *Eur J Pharm Biopharm.* 2011;78:462-469.
- Stegemann S, Ecker F, Maio M, et al - Geriatric drug therapy: Neglecting the inevitable majority. *Ageing Res Rev.* 2010;9:384-398.
- Llorca PM - Discussion of prevalence and management of discomfort when swallowing pills: orodispersible tablets expand treatment options in patients with depression. *Ther Deliv.* 2011;2(5): 611-622.
- Mangal M, Thakral S, Goswami M, Ghai P - Superdisintegrants: an updated review. *Int J Pharm PharmSciRes.* 2012;2:26-35.
- *** Romanian Pharmacopoeia 10th edition, 1993 and 2001 (2002) and 2004 Supplements, Medical Publishing House, Bucharest, 1993
- **** U.S. Pharmacopeial Convention – USP 38, NF 33 Edition, 2015
- Motulsky HJ, Christopoulos A - Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting, GraphPad Software Inc, San Diego CA, (www.graphpad.com), 2003:134-160.
- Young Z, Meirong H, Jianping Z et al - DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles. *The AAPS Journal*, 2010;12(3):263-271.

RESEARCH ARTICLE

Precursor Synthesis of Some New Macrocyclic Compounds

Şerban Andrei Gâz-Florea^{1*}, Eleonora Mircia², Lavinia Berța (Grama)³

¹ Organic Chemistry Department, Faculty of Pharmacy, University of Medicine and Pharmacy Tîrgu Mureş, Romania

² Drugs Industry and Pharmaceutical Management Department, Faculty of Pharmacy, University of Medicine and Pharmacy Tîrgu Mureş, Romania

³ General and Inorganic Chemistry Department, Faculty of Pharmacy, University of Medicine and Pharmacy Tîrgu Mureş, Romania

Objective: Development of new electronic devices with applications in computer science as well as new medical devices pushed the researcher to find new technologies. Based on those new techniques we have designed and synthesized compounds with possible application in the field of advanced materials. **Material and method:** Compounds were analyzed by TLC and NMR. Routine ^1H NMR (250 MHz) spectra were recorded at room temperature in deuterated acetone, unless stated otherwise. Thin-layer chromatography (TLC) was carried out on aluminum sheets coated with silicagel 60 F₂₅₄ Merck TLC plates. **Results:** Starting from commercial available compounds intermediates were obtained in a good yield. 4,4'-(2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diyl)diphenol was obtained starting from pentaerythritol and p-hydroxy-benzaldehyde in the presence of catalytic amounts of APTS (p-toluenesulfonic acid). The product was purified by recrystallization and characterized by NMR spectroscopy. The structure exhibit 2 different signals for equatorial and axial position. Furthermore di, tri and tetra ethylene glycol were obtained by microwave assisted synthesis in a matter of minutes. Compounds were separated by recrystallization.

Conclusions: In conclusion, several intermediates were synthesized and characterized from spectroscopic point of view. Further analyses should be carried out and the compounds should be tested as advanced materials.

Keywords: spiran, 1,3-dioxan, polyethylene glycol, inside&outside methylene group

Received 23 December 2016 / Accepted 16 January 2017

Introduction

Macrocyclic compound played a major role in the field of supramolecular chemistry because they can form organized supramolecular assemblies. Usually these macrocyclic have cavity of different size and can accommodate small or large molecules by host-guest interactions [1].

The design and synthesis of new macrocyclic compounds remain of great interest due to wide applications such as catalysis [2-4], advanced materials [5-7] and medicine [8-11].

One narrow domain of supramolecular chemistry is the field of molecular machine. Such as cars are driven by the conversion of piston action into a rotary motion, there are molecules that can undergo programmed motions in response to different stimuli. Molecular analogues of a variety of mechanical devices such as molecular rocking chair [12], rudder, wringer [13], shuttles [14], molecular elevator [15], unidirectional rotors [16], and tweezers have been created. But these “molecular machines” have been controlled by structural transition between two or more stable states in a reversible manner by one single moiety using external stimuli such as light, temperature or pH.

The aim of our work was the design and synthesis of some precursors of some macrocyclic compounds which incorporate 2 different switchable units and can be valuable compounds for synthesis of new photochemically and

conformational controlled molecular devices. Converting light-energy in “molecular motion” by *cis-trans* isomerization is one of the most studied and applied system by researchers. Usually azobenzene [17] or stilbene [18] derivatives are used due to the possibility of controlling the isomerization by both UV light and thermal relaxation [19]. Photoisomerization of azobenzene derivatives have been used to control electronic properties of more complex compounds [19] or to drive the folding/unfolding of peptide chains [20]. Therefore, we have considered of great interest the synthesis of some intermediates as building blocks for new macrocycles which can incorporated two or more switchable units.

Material and methods

All reagents were acquired from Sigma Aldrich, Merck or Alfa Aesar and were used without any further purification. Routine ^1H NMR (250 MHz) were recorded at room temperature (r.t.) in CD_3COCD_3 , unless stated otherwise on a Bruker 250 MHz spectrometer, using the solvent line as reference. Chemical shifts (δ) are reported in parts per million (ppm) values using residual solvent peak as internal reference and the coupling constants (J) are in Hertz (Hz). Multiplicities are abbreviated as: *s*-singlet; *d*-doublet; *dd*-doublet of doublet; *t*-triplet; *q*-quadruplet and *m*-multiplet. Compounds were analyzed by TLC and NMR. Thin-layer chromatography (TLC) was carried out on aluminum sheets coated with silicagel 60 F₂₅₄ Merck TLC plates.

* Correspondence to: Şerban Andrei Gâz-Florea
E-mail: andrei.gaz@umftgm.ro

Melting points were determined using a Boetius microscope and represent uncorrected values.

The irradiation was carried out in a domestic microwave oven (Samsung, model MS23F301EAK).

Synthesis of 3,3'-(2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diyl)diphenol (3)

A mixture of 3-hydroxybenzaldehyde (1.22 g, 1 mmol), pentaerythritol (680 mg, 0.5 mmol) and paratoluensulfonic acid (38 mg, 0.2 mmol) were stirred under reflux in a two-necked glassware flask connected to a Dear-Stark apparatus in about 100 mL toluene. The reaction was monitored by thin layer chromatography on silica gel coated plates Merck 30-F₂₅₄ using pentane:ethylacetate mixture (9:2 v/v). After completion of the reaction the mixture was washed three times with water, dried over Na₂SO₄, and filtered. Evaporation of the solvent in vacuo gave the desired crude product. The product was purified furthermore by recrystallization from ethanol (yield: 23%, mp 243-247 °C). ¹H NMR (250 MHz, CD₃COCD₃) δ/ppm 2.62 (dd, *J*=11.7 Hz, *J'*=1.8 Hz, 2H, *H*_{eq}); 3.01 (m, 2H, *H*_{ax}); 3.33 (d, *J*=11.7 Hz, 2H, *H*_{ax}); 4.15 (dd, *J*=11.7 Hz, *J'*=1.8 Hz, 2H, *H*_{eq}); 5.23 (s, 2H, Ar-CH); 6.80 (overlapped, 2H, H-6', H-6''); 6.94-7.07 (m, 4H, H-2', H-2'' and protons H-4', H-4''); 7.18 (overlapped dd, 2H, H-5', H-5''); 8.70 (s, 1H, OH).

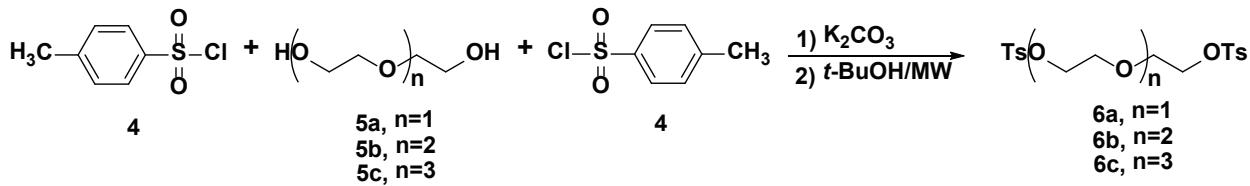
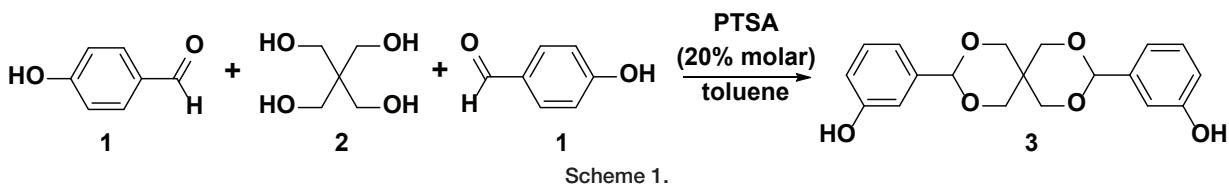
General procedure for synthesis of di-, tri- and tetra-ethylene glycol ditosylate

All compounds were obtained using a modified procedure described by Kazemi and coworkers [21]. 10.13 g K₂CO₃ (73.42 mmol), 50 mmol alcohol and 13.24 g (69.5 mmol) p-toluenesulfonyl chloride were charged into a mortar and grinded vigorously for about 15 minutes. A small amount of the mixture was dissolved in dichloromethane and the reaction progress was monitored by thin layer chromatography on silica gel coated plates Merck 30-F254) using dichloromethane:pentane mixture (1:2 v/v). The excess of tosyl chloride was removed by addition of about 2 mL of *t*-BuOH and irradiated (600 W) in a domestic microwave for about 3 minutes (*caution: a smoke was generated during the irradiation; therefore, the entire process was carried out under a very good ventilated chemical hood*). The reaction

mixture was stirred with ethylic ether washed twice with small portion of brine and the combined organic layers were dried over Na₂SO₄ and the solvent was removed using a rotary evaporator. The crude product either purified by recrystallization or by flash-chromatography (using a mixture of pentane:dichloromethane as eluent) affording pure tosylated compound.

Diethyleneglycol ditosylate (6a): Colorless crystals: m.p. 86-89°C. Yield: 87%. ¹H NMR (250 MHz, CDCl₃) δ/ppm 2.46 (s, 6H, CH₃); 3.63 (t, 4H, OCH₂); 4.11 (t, 4H, OCH₂); 7.35 (d, 4H, H-3', H-3''); 7.76 (d, 4H, H-2', H-2'');

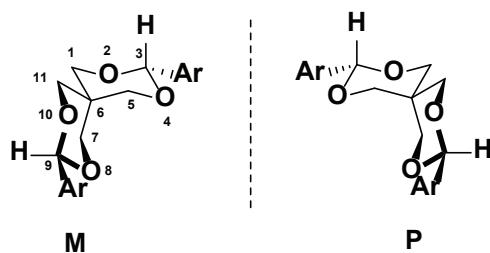
Triethyleneglycol ditosylate (6b): Colorless crystals: m.p. 76-80°C. Yield: 88%. ¹H NMR (250 MHz, CDCl₃) δ/ppm 2.31 (s, 6H, CH₃); 3.45 (s, 4H); 3.56 (t, 4H, OCH₂); 4.02 (t, 4H, OCH₂); 7.26 (d, 4H, H-3', H-3''); 7.69 (d, 4H, H-2', H-2'');



Tetraethyleneglycol ditosylate (6c): Tick oil. Yield: 84%. ¹H NMR (250 MHz, CDCl₃) δ/ppm 2.22 (s, 6H, CH₃); 3.38 (m, 8H); 3.45 (t, 4H, OCH₂); 3.96 (t, 4H, OCH₂); 7.16 (d, 4H, H-3', H-3''); 7.58 (d, 4H, H-2', H-2'');

Results

Since molecular devices are nowadays mostly controlled by mean of UV light we have thought that also conformational changes can be a way of controlling nanoscale devices. Therefore, we have designed a macrocyclic compound that bears both a spiran unit and a azobenzene moiety linked by polyethylene glycol linkage. In the first step, we have synthesized the spiran unit starting from commercially available reagents (scheme 1) in the presence of para-toluene sulfonic acid (PTSA) as catalyst.

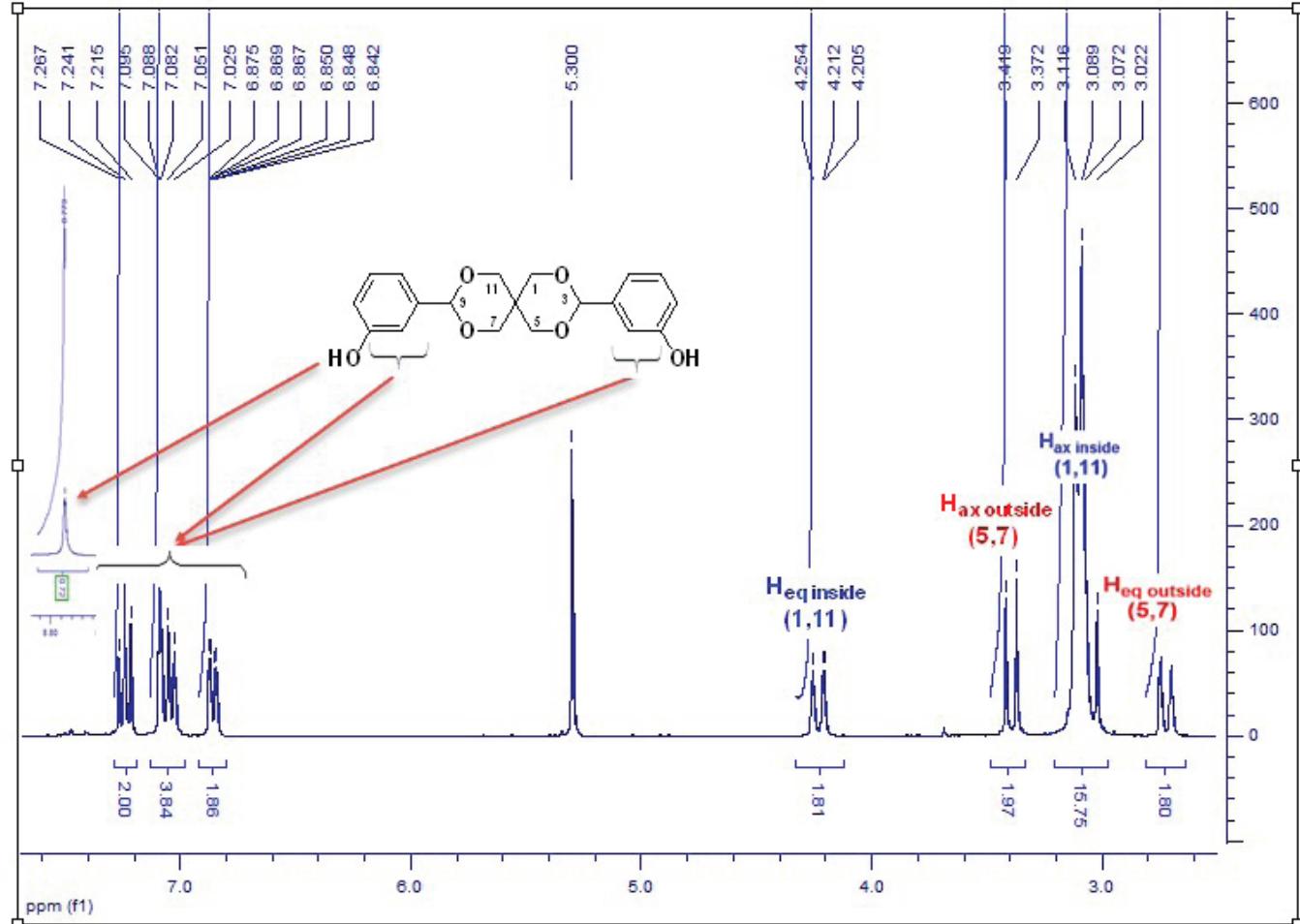
Spiran 3 was characterized by NMR spectroscopy and melting point was determined using a Boetius microscope. Both melting point [22] and NMR are in accordance with literature data.


Also, we have synthesized 3 polyethylene glycol ditosylate starting from corresponding alcohol and tosyl chloride in a manner of minutes using a solvent-free modified method described previously in the literature by Kazemi and coworkers [21] (Scheme 2).

Discussions

Since saturated six membered ring are one of the most studied class of compounds regarding the conformational changes we had in mind the design and synthesis of some macrocyclic compounds bearing this moiety. Since we intended to have a friendly green synthesis we have avoided using toxic solvents in the synthesis and we have tried to obtain the compound 3 following a method described in the literature [23] using a domestic microwave. Unfortunately, after irradiation in a domestic microwave an insoluble black tar was obtained. Therefore, we have followed classical method of synthesis of diacetals using acidic conditions (scheme 1).

Aryl derivatives of 2,4,8,10-tetraoxaspiro[5.5]undecane have specific helical and axial chirality [24]. On the other


Scheme 3. (reprinted from Grosu et al., 2003 [22], with permission from Wiley)

hand, 1,3-dioxane rings have an anancomeric structure where the conformational equilibrium is strongly shifted towards the conformer where aryl groups are in equatorial position. Due to the spiro skeleton which exhibit helical chirality, under reaction condition, the product is a racemic mixture of both M and P helix configuration [24] (Scheme 3).

Because of this conformational arrangement, NMR spectrum of compound 3 exhibit different signals for axial and equatorial protons from positions 5 and 7, as well as protons from positions 1 and 11. Methylenes from positions 5 and 7 are oriented towards the other 1,3-dioxane ring, being called methylene inside. The other two positions (1 and 11) which are oriented in the opposite direction are called methylene outside [25]. All the protons from spiroan skeleton exhibit two AB (AX) systems. Also, a long-range coupling split supplementary the equatorial protons. This was happened because of a "W (M)" arrangement of the bonds in a way of $H_{eq} - C^{1(11)} - C^6 - C^{5(7)} - H_{eq}$ between equatorial positions, therefore the signals for protons from equatorial positions are seen as doublets of doublets (figure 1).

Also, the equatorial protons of the methylene inside positions are more deshielded than those of outside position.

Furthermore, three ditosylated polyethylene glycol were synthesized using a very convenient solvent-free method,

starting from alcohol and tosyl chloride in basic media. Reaction is very quick and occur in very good yield.

Conclusions

In conclusion, we have synthesized and characterized one spiro showing different signals in NMR spectra for equatorial and axial positions. Also, due to spatial conformation of the spiro skeleton differences occur between inside and outside methylene protons in ¹H-NMR. Di-, tri- and tetra glycol ditosylated were obtained in good yield in a solvent-free condition.

Acknowledgements

This work was supported partially by University of Medicine and Pharmacy through Internal Grant no. 4/23.12.2014.

Conflict of interest

None to declare.

References

- Ogoshi T – Pillarenes, in Gale P, Steed J (eds): Monographs in Supramolecular Chemistry no. 18, Royal Society of Chemistry, Cambridge, UK, 2016, 1-3;
- Madhavan N, Takatani T, Sherrill CD, Weck M – Macrocyclic cyclooctene-supported AlCl-salen catalysts for conjugated addition reactions: effect of linker and support structure on catalysis. *Chem Eur J.* 2009;15:1186-1194;
- Grossmann A, Bartlett S, Janecek M, Hodgkinson JT, Spring DR – Diversity-oriented synthesis of drug-like macrocyclic scaffolds using an orthogonal organo- and metal catalysis strategy. *Angew Chem Int Ed.* 2014;53:13093-13097;
- Li ZP, Liu BH – The use of macrocyclic compounds as electrocatalysts in fuel cells. *J Appl Electrochem.* 2010;40:475-483;
- Prasanna deSilva A – Molecular logic-based computation, in Gale P, Steed J (eds): Monographs in Supramolecular Chemistry no. 12, Royal Society of Chemistry, Cambridge, UK, 2012, 35-36;
- Ballardini R, Balzani V, Credi A, Gandolfi MT, Kotzyba-Hilbert F, Lehn J-M, Prodi L – Supramolecular Photochemistry and Photophysics. A Cylindrical Macrotricyclic Receptor and its Adducts with Protons, Ammonium Ions, and a Pt(II) Complex. *J Am Chem Soc.* 1994;116:5741-5746;
- Jyothi RK, Lee JY – The role of macrocyclic compounds in the extraction and possible separation of platinum and rhodium from chloride solutions. *Sci Rep.* 2016;6:27668:1-14;
- You L, An R, Liang K, Cui B, Wang X – Macrocyclic Compounds: Emerging Opportunities for Current Drug Discovery. *Curr Pharm Des.* 2016;22:4086-4093;
- Mallinson J, Collins I – Macrocycles in new drug discovery. *Future Med Chem.* 2012;4:1409-1438;
- Ning CQ, Lu C, Yu NF et al. – Macrocyclic compounds as anti-cancer agents: Design and synthesis of multi-acting inhibitors against HDAC, FLT3 and JAK2. *Eur J Med Chem.* 2015;95:104-115;
- Wanninger S, Lorenz V, Subhan A, Edelmann FT – Metal complexes of curcumin -synthetic strategies, structures and medicinal applications. *Chem Soc Rev.* 2015;44:4986-5002;
- Balog M, Grosu I, Ple G, Ramondenc Y, Condamine E, Varga RA – Design and Synthesis of New Macrocyclic Cyclophanes Using 1,3-Dioxane Units as Bridges: A Molecular “Rocking Chair”. *J Org Chem.* 2004;69:1337-1345;
- Bogdan N, Grosu I, Benoit G, Toupet L, Ramondenc Y, Condamine E, Silaghi-Dumitrescu I, Ple G – Molecular Rotors: Design, Synthesis, Structural Analysis, and Silver Complex of New [7.7]Cyclophanes. *Org Lett.* 2006;8:2619-2622;
- Collin JP, Dietrich-Buchecker C, Gaviña P, Jimenez-Molero MC, Sauvage JP – Shuttles and Muscles: Linear Molecular Machines Based on Transition Metals. *Acc Chem Res.* 2001;34:477-487;
- Badjic JD, Balzani V, Credi A, Silvi S, Stoddart JF – A Molecular Elevator. *Science.* 2004;303:1845-1849;
- Leigh DA, Wong JKY, Dehez F, Zerbetto F – Unidirectional rotation in a mechanically interlocked molecular rotor. *Nature.* 2003;424:174-179;
- Kocsis I, Hădăde N, Grosu I – Synthesis and structural analysis of some new arylbromide decorated azobenzene derivatives. *Studia UBB Chemia.* 2012;LVII(4):101-107;
- Liu F, Morokuma K – Computational study on the working mechanism of a stilbene light-driven molecular rotary motor: sloped minimal energy path and unidirectional nonadiabatic photoisomerization. *J Am Chem Soc.* 2012;134:4864-4876;
- Merino E, Ribagorda M – Control over molecular motion using cis-trans photoisomerization of the azo-group. *Beilstein J Org Chem.* 2012;8:1071-1090;
- Xia SH, Cui G, Fang WH, Thiel W – How photoisomerization drives peptide folding and unfolding: Insights from QM/MM and MM dynamics simulations. *Angew Chem Int Ed.* 2016;55:2067-2072;
- Kazemi F, Massah AR, Javaherian M – Chemoselective and scalable preparation of alkyl tosylates under solvent-free conditions. *Tetrahedron.* 2007;63:5083-5087;
- Grosu I, Bogdan E, Plé G, Toupet L, Ramondenc Y, Condamine E, Peulon-Agasse V, Balog M – Synthesis and structure of a new macrocycles including spiro-1,3-dioxane units. *Eur J Org Chem.* 2003;2003(16):3153-3161;
- Wang CD, Shi XZ, Xie RJ – Synthesis of diacetals of 2,2-bis(hydroxymethyl)-1,3-propanediol under microwave irradiation. *Synth Commun.* 17;27(14):2517-2520;
- Grosu I, Mager S, Plé G, Horn P – Axial and helical chirality of some spiro-1,3-dioxanes. *J Chem Soc, Chem Commun.* 1995;1995:167-168;
- Gâz řA, Condamine E, Bogdan N, Terec A, Bogdan E, Ramondenc Y, Grosu I – Synthesis and stereochemistry of some new spiro and polyspiro-1,3-dithiane derivatives. *Tetrahedron.* 2008;64: 7295-7300;

RESEARCH ARTICLE

Relationship Between High Levels of Salivary Cotinine Test and Demographic Characteristics of Pregnant Smokers from Mures County

Ion Mihai Georgescu¹, Monica Tarcea², Claudiu Marginean³, Florina Ruta^{2*}, Victoria Rus², Remus Sipos⁴, Zoltan Abram¹

¹ Department of Hygiene, University of Medicine and Pharmacy Tirgu Mures

² Department of Community Nutrition, University of Medicine and Pharmacy Tirgu Mures

³ Department of Obstetrics and Gynecology I, County Emergency Hospital Tirgu Mures

⁴ Department of Anatomy, University of Medicine and Pharmacy TirguMures; Mures county General Practitioners Association

Objectives: To evaluate the relationship between the frequency of self-declared status regarding smoking in a group of pregnant women from Mures county, Romania and the high levels of Salivary Cotinine (SC) like biomarkers. **Material and methods:** It was conducted a retrospective study among 230 pregnant women presented for prenatal care at 50 General Practitioners cabinets in Mures county, Romania, in 2015. Data were collected with a validated questionnaire which included age, level of education, socioeconomic status and ethnicity, also the self-reported smoking status. The Salivary Cotinine level was evaluated using NicAlert Saliva test kits. **Results:** Using salivary test we identified a high prevalence of involuntary exposure to cigarette smoke among both non-smokers and those who quit smoking before pregnancy. Also we registered pregnant women that although declared smoking cessation before pregnancy their salivary Cotinine levels were high, almost like to an active smoker, probably because of second-hand exposure or because they didn't say the truth about their habit. **Conclusions:** We underline the importance of implementing more efficient community interventions among this vulnerable group in order to reduce the frequency of smoking and sustain quitting.

Keywords: smoking, pregnancy, cessation, cotinine test

Received 27 December 2016 / Accepted 23 January 2017

Introduction

Exposure to cigarette smoke in utero, whether it is direct or indirect via secondhand smoking, can be associated with negative consequences and severe health problems for the newborns, children, and adults [1-5]. Studies revealed that maternal smoking during pregnancy was associated with ectopic pregnancy, placental abruption, prematurity [6-8], low birth weight babies, and increased risk of having a baby with stunted neuro-development growth and cognitive problems [9,10,11]. Pregnant women, who are often aware of the risks of smoking, may be hesitant to disclose their true smoking status during a clinical encounter, limiting opportunities for provider-based counseling and support [12].

The most commonly used biomarker of exposure to tobacco smoke is Cotinine, as a main metabolite of nicotine. The measurement of the Cotinine concentration in various biological fluids is directly proportional to the degree of exposure to nicotine [13]. The determination of Cotinine is recommended for the assessment of active tobacco smoking, monitoring of environmental tobacco smoke (ETS) exposure, and impact evaluation of smoking cessation programs [14].

In a study on pregnant women made in Scotland, there was a 25% underestimation of smoking using self-reported

data that was validated with Cotinine [15]. A similar survey conducted in Sweden revealed that 6% of self-reported non-smokers were probably smokers and 3% had Cotinine levels suggestive for secondhand smoking using Cotinine validation [16].

There are scientific proofs that smoke-free environment represents the only strategy for protecting the population from second-hand smoking negative effects [17]. For this matter, many countries have implemented legislations requiring all public places, workplaces and all indoor places to be free of secondhand smoking [18]. In 2004, Ireland was the first country which implemented the smoke-free legislation. Since then, other European and non-European countries followed Ireland; Norway, New Zealand, Italy, Uruguay, England and several provinces in Canada, the USA or Australia [19,20] had implemented the smoke-free law.

In Romania the anti-tobacco law was implemented in June 2002, and stipulate smoking only in specially arranged public spaces and in February 2016 it was modified by banning smoking in all public spaces. A study performed after the adoption of smoke free law in Uruguay showed a measurable decrease of passive smoking exposure in indoor public places and workplaces, the level of exposure was assessed by measuring air nicotine concentrations [21].

The goal of our research was to evaluate the relationship between the frequency of self-declared status regard-

* Correspondence to: Florina Ruta
E-mail: florina.ruta@umftgm.ro

ing smoking in a group of pregnant women from Mures county, Romania and the high levels of Salivary Cotinine (SC) like biomarkers.

Material And Methods

Settings and population

Population. We conducted a convenience study among pregnant women presented for prenatal care at 50 General Practitioners (GP) cabinets out of 90, in Mures county, Romania. From 324 women which were presented for monitoring purposes to GP's, only a group of 230 pregnant women agreed to fill in a questionnaire regarding smoking status and Cotinine testing, group that formed the final sample of our research.

Measurement: Data were collected based on a validated questionnaire which included age, level of education, socioeconomic status and ethnicity. We also measured self-reported smoking status using the following questions (I have never used cigarettes and I was a regular smoker during pregnancy). Responses were categorized into two groups: smokers and non-smokers.

Salivary Cotinine level was evaluated using NicAlert Saliva test kits. The test principle is based on the use of monoclonal antibodies for Cotinine, and was developed for the identification of smoking status in research studies, on individuals that are monitored for smoking cessation, not for medical diagnosis or therapy. If Cotinine is present in the sample, it will bind to the antibody through binding sites. The number of sites is occupied according to the amount of Cotinine present in a sample. Cotinine, one of the major metabolite of Nicotine, is a suitable candidate as a marker, because it has a relatively long half-life of 10-40 hours and was found to be more sensitive and specific than carbon monoxide in the air.

To achieve regression models we have encoded variables of interest and marked it in the below table 1 as legend that follows: the dependent variable was the amount of Cotinine (the N00, N11, N22 were coded 0 for N33, N44, N55, N66 were coded 1), the independent variables were: Q2 (less than 8 years of school. 8 years of school. Vocational school - coded 1. High school. Graduated. University - encoded 0), Q4 (Married. Concubinage - encoded 0. Not married. Divorced. Widow - coded 1), Q5 (Romanian. Hungarian - encoded 0. Roma people - coded 1. Then, the level of smoking was evaluated based on), Q7 (I have never used cigarettes. I stopped smoking before I was pregnant - I do not smoke. I stopped smoking when I found out I'm pregnant - do not smoke - smoke regularly encoded 0 and for the same number of cigarettes as before I was pregnant. I smoke but I reduced the number of cigarettes after I got pregnant. I increased the number of cigarettes consumed when I found out I was pregnant - coded 1). Q9 (1. coded 0; 1. 2. 3. 4 encoded), Q10 (Nobody smokes where I stay. Smokers can smoke only in certain rooms in the house - encoded 0. Smokers can smoke wherever they want - coded 1), Q11 (Did not show any change. People smoke

anywhere in the house even if they found out they were pregnant - coded 1. No one smokes in the house when I was pregnant - Smoke outside. People smoke in other rooms when they found out I was pregnant - encoded 0), Q18 (I did not smoke cigarettes during the past 30 days. coded 0; Less than one cigarette per day. One cigarette per day. 2-5 cigarettes a day. 6-10 cigarettes per day. Between 11 to 20 cigarettes a day. Between 21 to 30 cigarettes a day. More than 30 cigarettes a day: coded 1), Q19 (I have not smoked a cigarette in the last 30 days - code 0; In 5 minutes. In 6-30 min. In 31-60 minutes. After 60 minutes - coded 1), and Q25 (Yes. in the next 30 days. Yes. the next 6 months. Yes. but not in the next 6 months - there encoded 0. I'm not going to give up - coded 1).

Samples Collection/Preparation

Saliva Testing: Saliva was collected using a funnel, and the collection tube to fill at least one third of its capacity. In the first 4 hours after collection, eight drops of the sample were extracted and deposited on the end of the tape lined Accutest NicAlert test strip, which previously was placed on a flat surface. After transferring saliva from the red zone into the white, the red color must appear in at least one zone (levels 0-6), otherwise, the test results are not valid [25].

Interpretation: Identifying areas of salivary Cotinine labeled bands in the area ranging from 0 (0-10 ng / ml) to 10. Any concentration greater than or equal to 10 ng / ml (zones 1-6) represent a positive result. Salivary Cotinine concentrations and interpretation are as follows: level 0 (1-10 ng / ml) is a nonsmoker; 11 (10-30 ng / ml) corresponds to involuntary smoking; level 22 (30-100ng / ml) - confirmed smoker with low tobacco consumption; 33 (100-200 ng / ml) is a confirmed smoker with moderate tobacco consumption; and 44 (200-500 ng / ml) – is smoker with a high level of tobacco consumption.

The research protocol was approved by the ethics committee at the University of Medicine and Pharmacy Tîrgu-Mures, as part of a larger study on Building Capacity for Tobacco Research in Romania.

Statistical analysis

Statistical analysis was performed using the Statistical Package for Social Sciences (SPSS, version 20, Chicago, IL, USA). The association between qualitative variables was assessed using chi-square test or Fisher's exact test. The relationship between the explanatory variables and other Cotinine were evaluated by logistic regression.

The results were presented by odds ratio (OR) and 95% CIs. For all statistical tests of significance alpha level was set at 0.05.

Results

The bivariate analysis of the relationship between Cotinine levels and socio-demographic showed that the smoking status of pregnant women monitored was significantly influenced by the low level of education ($p = 0.0001$. OR:

5.69 for 95% CI 0.86-11.25) and Roma ethnicity ($p = 0.0001$, OR: 4.9, 95% CI = 1.90-12.77). No statistically significant data were registered regarding marital status or presence of intervention from a General Practitioner (GP) related to the risk of active or secondhand smoking.

Behavioral parameters data revealed that tobacco use in pregnancy was influenced by smoking status in pre-pregnancy period. Smoking family members also influenced attitudes towards smoking of pregnant women inside the home and those with no changes done during pregnancy about quitting ($p = 0.0001$, OR: 6.1, 95% CI = 2.88-12.89) or ($p = 0.0001$, OR: 6.1, 95% CI = 2.67-13.62). The lack of change in smoking behavior by direct family members in the presence of pregnant women and inside the house, had a bad impact on tobacco consumption in subjects investigated ($p = 0.0001$, OR: 2.26, 95% CI = 1.22-4.20), also the attitude of pregnant women towards smoking in the last 30 days prior to questioning was associated with an increased risk of continued smoking during pregnancy for women who have lit a cigarette at least a day in the last 30 days ($p = 0.0001$, OR: 55.5, 95% CI = 22.22-138.61). The short time between the first cigarette in the morning with the lack of any concerns of cessation, had a significant bad influenced upon smoking status of subjects investigated ($p = 0.0001$, OR: 56.0, 95% CI = 22.43-139.79) (see Table I).

In the group of women informed by the GP's about the smoking consequences during pregnancy, was found high levels of Cotinine especially in those with low education,

those living in houses where are smokers with no restrictions and those who said they are not planning to quit smoking in the next 30 days.

High levels of Cotinine were found in pregnant smokers, in those with one or more family members who are smokers, those who smoked in the last 30 days, women who smoked within the first hour after awakening, and those that do not think seriously about quitting as well, all subjects from both groups monitored (trained and untrained by the GP's) (see Table II).

Our data showed that an increased level of Cotinine is associated with active smoking (Q7), and with secondhand smoking as well (Q9) (Table III).

An increased Cotinine levels has been highlighted among Roma pregnant women (68.2%), and in 64.7% of pregnant women with low education (less than high school) also at 33.6% of married women.

The level of Cotinine was dependently influenced by the number of smokers in the pregnant household ($p = 0.0004$, OR: 5.19, 95% CI = 2.08-12.96), by the number of cigarettes smoked in the last 30 days ($p = 0.0001$, OR: 73.8, 95% CI = 19.53-279.31), and how long after awakening the pregnant light up the first cigarette ($p = 0.0001$, OR: 53.45, 95% CI = 17.13-79.36).

Our data showed that saliva Cotinine cut-off level of 10 ng/ml was found to be the optimum cut-off value that differentiates pregnant smokers from non-smokers or secondhand smoking when all testing conditions were possible to fulfill.

Table I. Bivariate analysis of the relationship between Cotinine levels and socio-demographic parameters

Socio-demographic parameters		Cotinine**		OR	IC	P
Questions	Codes *	1	0			
Education level	1	64.7%	24.4%	5.69	2.86-11.25	0.0001
	0	35.3%	75.6%			
Marital status	1	37.5%	33.7%	1.18	0.54-2.57	0.69
	0	62.5%	66.3%			
Ethnicity	1	68.2%	30.3%	4.9	1.90-12.77	0.0001
	0	31.8%	69.7%			
Intervention	1	51.0%	45.2%	1.26	0.51-3.09	0.64
	0	49.0%	54.8%			
Time	Pretest=1	43.7%	69.1%	0.35	0.19-0.62	0.0004
	Post-test=0	56.3%	30.9%			
Behavioral parameters						
Questions		Codes				
Self-declared smoking status	1	84.8%	10.1%	50.0	20.93-119.41	0.0001
	0	15.2%	89.9%			
Number of smokers in the family	1	47.3%	12.8%	6.1	2.88-12.89	0.0001
	0	52.7%	87.2%			
Exposure to passive smoking	1	69.0%	27.6%	6.1	2.67-13.62	0.0001
	0	30.3%	72.4%			
Avoiding passive smoking in the family	1	47.8%	28.8%	2.26	1.22-4.20	0.0001
	0	52.2%	71.2%			
Smoking status in the last 30 days	1	84.6%	9.0%	55.5	22.22-138.61	0.0001
	0	15.4%	91.0%			
Time duration between -waking and first cigarette in the last 30 days	1	84.8%	9.1%	56.0	22.43-139.79	0.0001
	0	15.2%	90.9%			
Planning to quit smoking	1	32.3%	62.5%	0.286	0.119-0.688	0.0001
	0	67.7%	37.5%			

* Legend explained in Methods section.

** Bivariate analysis of variable Cotinine, taken binary 0-absent and 1-present.

Table II. Cotinine levels correlated with socio-demographic parameters, depending on the intervention of GP's or not

Questions*	Cotinine**	Pregnant women with intervention for cessation			Pregnant women without intervention for cessation		
		1	0	P OR (CI95%)	1	0	P OR (CI95%)
Education level	1	71.4	17.6	0.003	34.6	12.0	0.057
	0	28.6	82.4	11.6 (2.12-64.1)	65.4	88.0	2.88 (0.90-16.5)
Marital status	1	28.6	23.5	0.75	7.7	0.0	0.15
	0	71.4	76.5	1.3 (0.25-6.52)	92.3	100.0	2.04 (1.53-2.71)
Ethnicity	1	42.9	11.8	0.09	11.5	0.0	0.08
	0	57.1	88.2	5.62 (0.91-34.5)	88.5	100.0	2.08 (1.55-2.80)
Self-declared smoking status	1	85.7	0.0	0.0001	88.5	12.0	0.0001
	0	14.3	100.0	9.5 (2.56-35.2)	11.5	88.0	56.2 (10.23-308.8)
Number of smokers in the family	1	100.0	64.7	0.02	88.5	40.0	0.0001
	0	0.0	35.3	0.44 (0.28-0.68)	11.5	60.0	11.5 (2.71-48.7)
Exposure to passive smoking	1	50.0	0.0	0.001	15.4	12.0	0.72
	0	50.0	100.0	3.42 (1.83-6.39)	84.6	88.0	1.33 (0.26-6.66)
Avoiding passive smoking in the family	1	35.7	17.6	0.25	44.0	35.0	0.54
	0	64.3	82.4	2.59 (0.49-13.6)	56.0	65.0	1.45 (0.43-4.90)
Smoking status in the last 30 days	1	84.6	0.0	0.001	88.5	14.3	0.001
	0	15.4	100.0	9.5 (2.56-35.2)	11.5	85.7	46.0 (8.27-255.6)
Time duration between -waking and first cigarette in the last 30 days	1	85.7	0.0	0.001	88.5	14.3	0.001
	0	14.3	100.0	9.5 (2.56-35.2)	11.5	85.7	46.0 (8.27-255.6)
Planning to quit smoking	1	0.0	43.8	0.005	40.9	57.1	0.45
	0	100.0	56.2	2.55 (1.53-4.25)	59.1	42.9	0.52 (0.09-2.9)

*Legend explained in Methods section.

**Multivariate analysis of variable Cotinine, taken binary 0-absent and 1-present.

Table III. Correlations between socio-demographic variables and Salivary Cotinine level

Variable	Odds Ratio	95% CI	P
Intervention	1.99	0.20 to 19.53	0.55
Education level	1.03	0.10 to 9.72	0.97
Age	1.09	0.89 to 1.34	0.37
Marital status	16.51	0.86 to 316.55	0.06
Ethnicity	6.27	0.20 to 188.49	0.29
Smoking status	109.12	16.76 to 710.38	<0.0001

Discussions

Starting with estimated rates of daily smoking for 31-37% of the Romanian adult population and 24% among students it is critically needed to develop efficient programs for tobacco cessation. In this context, research studies are important to find the best techniques to be used for a sustainable network dedicated to population support for smoking cessation or even better for avoidance of the onset [13, 17].

Prolonged exposure to tobacco smoke, especially to cigarettes, has been scientifically proven to have harmful effects on organs, systems and processes in the human body, both for active as for the secondhand smokers. Inhalation of more than 4800 different chemicals by smoking, creates fertility problems and an increased risk of health problems during pregnancy, for mother or fetus [17].

The conditions of appearance and maintenance of this habit are influenced by economic status, education and culture, family background, emotional climate and level of addiction.

After analyzing pregnant self-reports on smoking status, our study showed a high frequency of women who smoked

before pregnancy (30.04%) of which a high percentage (43.3%) continued to smoke during pregnancy, a high frequency even for Romania [22,23,24].

In another similar study conducted in Romania in 2002 on a sample of 286 people, based on sample self reports about smoking status the initial classification was: 50.56% active smokers, 3.5% occasional smokers and 55.94% nonsmokers [26]. After performing the Cotinine test strips the subjects distribution by their smoking status was represented as: 44.06% active smokers, 39.50% passive smokers and 16.43% non-smokers [26]. These results showed that more than a half of the subjects participating in this study self-declared being nonsmokers, but this percent decreased dramatically after the test performing, and higher frequency of positive Cotinine levels was encountered in women than in men [26,27,28].

Regarding the limitations of our study we can mention that there were situations where testing conditions were not always possible to fulfill. In heavy smokers case, their saliva was more thicker than secondhand smokers or non-smokers women, which did not allow Cotinine migration into test strip without a thermostatic period. This has not always been possible because not all health facilities within which they carried out the collection were equipped with a thermostat. Thus, there were cases where the Cotinine test showed negative results while the study participants declared themselves as active smokers (6 out of 31).

The etiological factor for tobacco addiction is nicotine. The recent smoking cessation approaches tend to focus on this chronic, relapsing dependence on tobacco, even by monitoring components of nicotine in the blood, or sa-

liva. The success of such approach involves understanding of the chronic nature of tobacco addiction, the monitoring period (not just interventions in the acute stages of manifestation) associated with behavioral educating both for healthcare professionals and also for patients [20,23].

We believe that the results of this study will enable a shift in starting up community interventions more effective in smoking cessation outcomes, manifest especially among young women who are pregnant or are preparing to be, from different ethnicities and specific socio-demographic and cultural profiles.

Conclusion

Using salivary Cotinine test we identified a high frequency of involuntary exposure to cigarette smoke among both non-smokers and those who quit smoking before pregnancy. Also we registered pregnant women that although declared smoking cessation before pregnancy their salivary Cotinine levels were high, almost like to an active smoker, probably because of secondhand exposure or because they did not say the truth about their habit. We underline the importance of implementing more efficient community interventions among this vulnerable group in order to reduce the frequency of smoking and sustain quitting.

Acknowledgments

Research reported that this publication was supported by the Fogarty International Center and the National Cancer Institute of the National Institutes of Health under Award Number R01 TW009280. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

No conflict of interest.

References

1. Salihu HM, Wilson RE - Epidemiology of prenatal smoking and perinatal outcomes. *Early Hum Dev.* 2007;83:713-720.
2. Wen CP, Cheng TY, Lin CL, et al - The health benefits of smoking cessation for adult smokers and for pregnant women in Taiwan. *Tob Control.* 2005;14:i56-61.
3. Holbrook BD - The effects of nicotine on human fetal development. *Birth Defects Res C Embryo Today.* 2016;108:181-92.
4. Balte P, Karmaus W, Roberts G, et al. Relationship between birth weight, maternal smoking during pregnancy and childhood and adolescent lung function: A path analysis. *Respir Med.* 2016;121:13-20.
5. Rozi S, Butt ZA, Zahid N, et al - Association of tobacco use and other determinants with pregnancy outcomes: a multicentre hospital-based case-control study in Karachi, Pakistan. *BMJ Open.* 2016;6:111-16.
6. Talati A, Odgerel Z, Wickramaratne PJ, et al - Brain derived neurotrophic factor moderates associations between maternal smoking during pregnancy and offspring behavioral disorders. *Psychiatry Res.* 2016;245:387-391.
7. Shisler S, Eiden RD, Molnar DS, et al - Effects of fetal tobacco exposure on focused attention in infancy. *Infant Behav Dev.* 2016;45:1-10.
8. Flanagan CA, Koller KR, Wolfe AW, et al - Fetal Exposure to Carcinogens With Tobacco Use in Pregnancy: Phase 1 MAW Study Findings. *Nicotine Tob Res.* 2016; 18:2162-2168.
9. England LJ, Aagaard K, Bloch M, et al - Developmental toxicity of nicotine: A transdisciplinary synthesis and implications for emerging tobacco products. *Neurosci Biobehav Rev.* 2016;72:176-189.
10. Hayes C, Kearney M, O'Carroll H, et al - Patterns of Smoking Behaviour in Low - Income Pregnant Women: A Cohort Study of Differential Effects on Infant Birth Weight. *Int J Environ Res Public Health.* 2016;13:28-33.
11. Leonardi-Bee J, Smyth A, Britton J, et al - Environmental tobacco smoke and fetal health: systematic review and meta-analysis. *Arch Dis Child Fetal Neonatal.* 2008;93:351-361.
12. Okoli C - A Comparison of Survey Measures and Biomarkers of Secondhand Tobacco Smoke Exposure among Nonsmokers. *Public Health Nurs.* 2016;33(1):82-9.
13. Fagan P, Moolchan ET, Pokhrel P, et al - Addictive Carcinogens Workgroup: Biomarkers of tobacco smoke exposure in racial/ethnic groups at high risk for lung cancer. *Am J Public Health.* 2015;105:1237-45.
14. SRNT Subcommittee on Biochemical Verification, "Biochemical verification of tobacco use and cessation," *Nicotine and Tobacco Research*, 2012;4(2):149-159.
15. Shipton D, Tappin DM, Vadiveloo T, et al - Reliability of self reported smoking status by pregnant women for estimating smoking prevalence: a retrospective, cross sectional study. *BMJ.* 2009;339:b4347.
16. Lindqvist R, Lendahl L, Tollbom O, et al - Smoking during pregnancy: comparison of self-reports and Cotinine levels in 496 women. *Acta Obstet Gynecol Scand.* 2002; 81:240-244.
17. World No Tobacco Day: smoke-free inside: create and enjoy 100% smoke-free environments. WHO Library Cataloguing-in-Publication Data. 2007.
18. Fernández E, Fu M, Pascual JA, et al - Impact of the Spanish smoking law on exposure to secondhand smoke and respiratory health in hospitality workers: a cohort study. *PLoS One.* 2009;4:e4244.
19. Akhtar PC, Currie DB, Currie CE, et al - Changes in child exposure to environmental tobacco smoke (CHETS) study after implementation of smoke-free legislation in Scotland: national cross sectional survey. *Br Med J.* 2007;335:545.
20. Franchini M, Caruso C, Perico A, et al - Assessment of foetal exposure to cigarette smoke after recent implementations of smoke-free policy in Italy. *Acta Paediatr.* 2008; 97:546-550.
21. Blanco-Marquizo A, Goja B, Peruga A, et al - Reduction of secondhand tobacco smoke in public places following national smoke-free legislation in Uruguay. *Tob Control.* 2010;19(3):231-234.
22. Arora CP, Kacerovsky M, Zinner B, et al - Disparities and relative risk ratio of preterm birth in six Central and Eastern European centers. *Croat Med J.* 2015;56(2):119-27.
23. Meghea CI, Rus IA, Cherecheş RM, et al - Maternal smoking during pregnancy and birth outcomes in a sample of Romanian women. *Cent Eur J Public Health.* 2014;22(3):153-8.
24. Trofor A, Man MA, Miron R - Smoking during pregnancy-a challenge to practitioners. *Pneumologia.* 2009;58(4):247-249.
25. Accutest® NicAlert™ Saliva - Jant Pharmacal. Never Place NicAlert Strip in Mouth, <http://www.accutest.net/products/pdf/ds47ny150.pdf> (Accessed November 2016).
26. Nuca C, Amariei C, Badea V, et al - Salivary Cotinine - biomarker of tobacco consumption in the assessment of passive smoking prevalence. *Farmacia.* 2012; 60(5):662-674.
27. Shipton D, Tappin D, Vadiveloo T, et al - Reliability of self reported smoking status by pregnant women for estimating smoking prevalence: a retrospective, cross sectional study. *BMJ.* 2009;339:b4347.
28. Polanska K, Krol A, Kaluzny P, et al - Estimation of Saliva Cotinine Cut-Off Points for Active and Passive Smoking during Pregnancy - Polish Mother and Child Cohort. *Int J Environ Res Public Health.* 2016;13(12):1216.

RESEARCH ARTICLE

The Influence of Some Parameters on Chiral Separation of Ibuprofen by High-Performance Liquid Chromatography and Capillary Electrophoresis

Alina Balint, Anca Gabriela Cârje*, Daniela Lucia Muntean, Silvia Imre

Department of Analytical Chemistry and Drug Analysis, University of Medicine and Pharmacy Tîrgu Mureş, Romania

Objective: The aim of the study was to compare the influence of mobile phase composition and temperature on chiral separation of racemic ibuprofen by capillary electrophoresis and high performance liquid chromatography with UV detection. **Materials and methods:** Racemic ibuprofen was analysed on a chiral OVM column with an HPLC system 1100 Agilent Technologies, under isocratic elution, by using potassium dihydrogen phosphate 20 mM and ethanol in mobile phase. The flow rate was set at 1 mL/min, UV detector at 220 nm and different column temperatures were tested. For electrophoresis separation an Agilent CE G1600AX Capillary Electrophoresis System system, with UV detection, was used. The electrophoresis analysis was performed at different pH values and temperatures, with phosphate buffer 25 mM and methyl- β -cyclodextrin as chiral selector. **Results:** The chromatographic analysis reveals a high influence of mobile phase pH on ibuprofen enantiomers separation. An elution with a mixture of potassium dihydrogen phosphate 20 mM pH=3 and ethanol, at 25°C, allowed enantiomers separation with good resolution in less than 8 min. **Conclusions:** The proposed HPLC method proved suitable for the separation of ibuprofen enantiomers with a good resolution, but the capillary electrophoresis tested parameters did not allow chiral discrimination.

Keywords: ibuprofen, enantiomers, HPLC, CE, chirality

Received 17 January 2017 / Accepted 25 February 2017

Introduction

Ibuprofen or (R,S)-2-(4-isobutylphenyl)propanoic acid is an anti-inflammatory agent with chiral structure (Figure 1). The two enantiomers have different biological behavior, the S(+) enantiomer being the eutomer, but R(-) ibuprofen is partially converted to form S(+) in biological environment [1,2]. There were many attempts to isolate the eutomer from racemate or to find a specific chemical synthesis of single enantiomer. The high costs of processes and their difficulties, together with the partial biological conversion of the inactive enantiomer explain why ibuprofen is used as racemase in drugs.

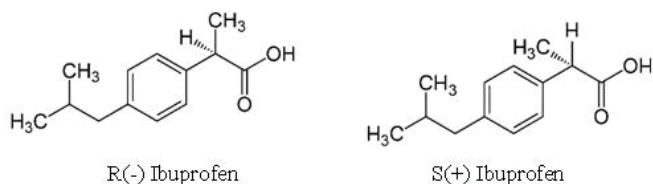


Fig.1. Ibuprofen enantiomers

There are many published methods regarding ibuprofen chiral resolution, mainly made by chromatographic methods [3-11] and few by capillary electrophoresis [12-16]. In general, the methods are designed to analyze enantiomers in biological environment for different purposes such as enantiomers conversion, differences regarding their biological behavior etc.

Ovomucoid is a chiral chromatographic support suitable for HPLC separation of many active pharmaceutical ingredients from different pharmacological classes [17-19]. Capillary electrophoresis is today a powerful chiral separation technique with many applications in enantiomers separation of drugs.

The aim of the present work is to propose a new application of ovomucoid chiral stationary phase for HPLC separation of ibuprofen enantiomers and to test the ability of methyl- β -cyclodextrin to discriminate the same enantiomers by capillary electrophoresis.

Methods

HPLC analysis

Apparatus: The HPLC analysis was performed on HPLC system 1100 Agilent Technologies, using an Ultron ES OVM column, 150x4.6 mm, 5 μ m (Shinwa Chemical Industries LTD., Agilent Technologies).

Materials and methods: Ibuprofen racemic working standard from Societa Italina Medicinali Scandicci, Italy, was used. For HPLC analysis, the following reagents and solvents were necessary: ethanol and methanol for chromatography, potassium dihydrogen phosphate (Merck products), and purified water obtained from a purifying system Direct Q5 (Millipore).

Methods: The stock racemic ibuprofen solution was prepared in methanol at a concentration of 0.1 % (m/V). The stock solution was further diluted in order to obtain the working solution of 10 μ g/mL. The solutions were stored at 8°C to avoid any potential degradation. The mobile phase consisted of 90% potassium dihydrogen phosphate

* Correspondence to: Anca Gabriela Cârje
E-mail: carje_anca@yahoo.com

buffer 20 mM and 10% ethanol, and delivered at a flow rate of 1 mL/min. The samples were injected in volumes of 5 μ L and the analytes were detected at 220 nm.

Capillary electrophoresis separation

Apparatus: Capillary electrophoresis separation was performed using a HP AGILENT 3D CE G1600AX system with UV detection, glass capillary with optic window 8 mm, 65 cm x 75 μ m (PolymicroTechnology, Phoenix, AZ, USA).

Materials: ibuprofen racemic working standard, methanol (Merck for liquid chromatography), ultrapure water (18.2 M Ω ·cm) disodium phosphate, monosodium phosphate, sodium borate hydrate, methylbetacyclodextrine (CycloLab).

Methods: The ibuprofen solution of 0.5 mM in methanol:water 1:1 was injected (100 μ L), under 50 mbar pressure for 2 seconds, with an applied current of 20 kV. For system preconditioning, the capillary was washed with NaOH 1 M solution for 30 minutes, with water for 15 minutes, then with buffer solution (phosphate buffer 25 mM) for 5 minutes. The cyclodextrine solutions were prepared in phosphate buffer 10 mM.

Results and discussions

HPLC analysis

The ovomucoid chiral column contains a glycoprotein present in eggs with large chiral recognition ability. The recommended pH analysis domain is 3-7.5 with phosphate buffer at concentration of 20 mM. The maximum allowed proportion of organic solvent in mobile phase composition is 50% and the best resolution is provided with the flow rate of 0.8-1.2 ml/min. Acid compounds retention is maximum at isoelectric pH of analytes.

The concentration of the test solution, 10 μ g/ml, is correlated with the plasmatic concentration of ibuprofen after its oral administration in low to high doses [20].

Acetonitrile, a powerful elution solvent, was not suitable for ibuprofen retention, even at high composition of aqueous phase. Because the differences between ethanol and methanol in mobile phase were not so significant and considering its lower toxicity, ethanol was used as organic modifier of the mobile phase.

The influence of pH on enantiomers separation was performed using different pH values for mobile phase: pH=3, pH=4.7, pH=6.1, with a proportion of aqueous phase of 90% and the column temperature maintained at 25°C. The best resolution of separation was obtained using a mobile phase pH=4.7, with a resolution of 2.46, but the retention times for ibuprofen enantiomers were high: tR1 = 19.80 min and tR2 = 23.49 min (Figure 2). At higher pH of 6.1, the separation was not possible (Figure 3); the low pH of 3 allowed the enantiomer separation with a very good resolution in less than 8 min (Figure 4, upper image).

As it is well known, the temperature is an important parameter of enantiomer separation, thermodynamic processes of chemical compounds retention and separation being strongly influenced by this parameter. In this case, we carried out the chromatographic separation at the optimum mobile phase pH (pH=3.00) at different column temperatures (20°C, 25°C, 30°C and 35°C). The other chromatographic conditions were the same as previously described (Figure 4).

In accordance to our results, an acid pH of 3 for aqueous mobile phase was an optimum value for a compromise between good separation and adequate retention time.

As it can be seen from Figure 4 and Table I, we can conclude that a higher column temperature did not lead to a better resolution of enantiomers separation and a column temperature similar with the room temperature is an optimum value.

Thus, we can conclude that the mobile phase consisting in phosphate buffer 20 mM, pH 3 and ethanol (90:10),

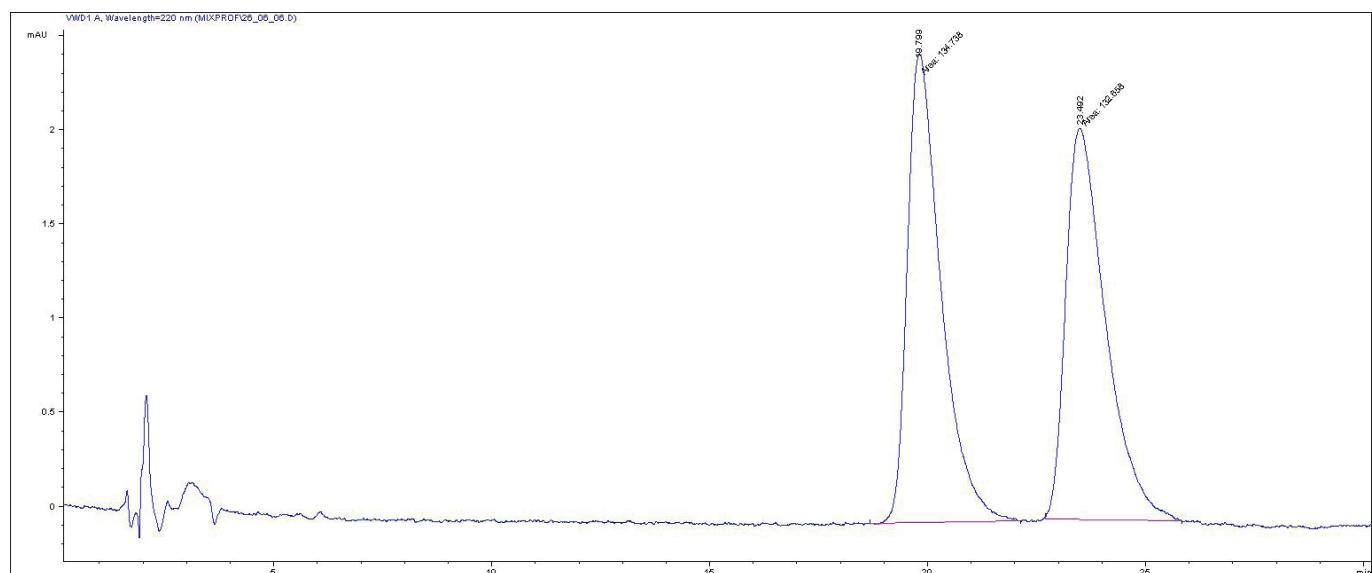


Fig. 2. Ibuprofen enantiomers separation with mobile phase A - KH₂PO₄ 20 mM (pH=4.7), B - ethanol, 90%A:10%B, flow rate 1 ml/min, detection at 220 nm, column

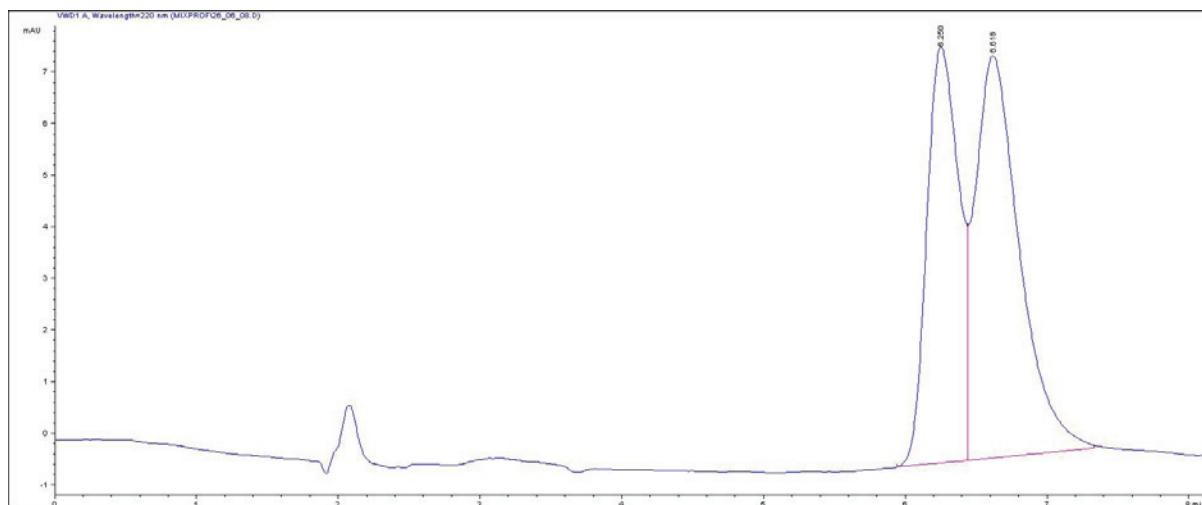


Fig. 3. Ibuprofen enantiomers separation with mobile phase A - KH₂PO₄ 20 mM (pH=6.1), B - ethanol, 90%A:10%B, flow rate 1 ml/min, detection at 220 nm, column

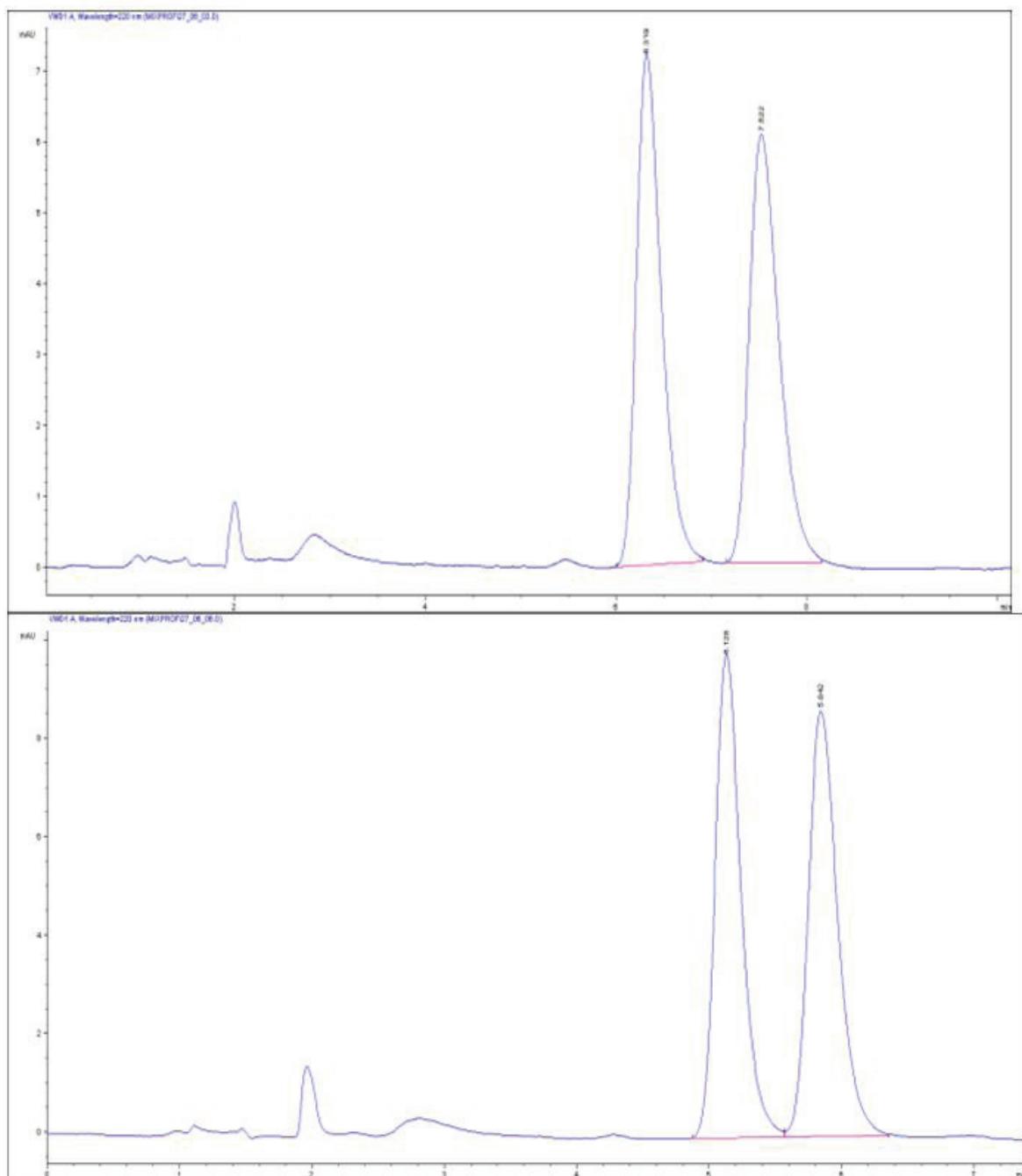


Fig. 4. Ibuprofen enantiomers separation with mobile phase A - KH₂PO₄ 20 mM (pH=3.0), B - ethanol, 90%A:10%B, flow rate 1

Table I. The influence of temperature on chromatographic parameters of ibuprofen enantiomers

Parameters	Temperature			
	20°C	25°C	30°C	35°C
tR1, min	6.81	6.32	5.69	5.13
tR2, min	8.25	7.52	6.64	5.84
Rs	2.45	2.33	2.20	1.93

delivered at a flow rate of 1 ml/min, with a column temperature around room temperature and detection at 220 nm, are the separation conditions required for optimal resolution and detection of ibuprofen enantiomers. The separation process revealed first the R enantiomer and secondly the S enantiomer.

Capillary electrophoresis

The influence of buffer pH, temperature, cyclodextrine concentration and the nature of buffer was tested. Evaluation of different pH values for the buffer solution at room temperature has revealed a peak characteristic for ibuprofen racemate at pH=6.8. In this case, a lower pH of the

buffer solution did not improve the separation. Furthermore, different temperatures of separation, 20°C, 25°C, 30°C, were tested. Unfortunately, no tendency of separation was noticed (Figure 5). Other tests were performed using different cyclodextrine concentrations (15 mM, 10 mM and 5 mM), and we observed a minimum of retention at 10 mM without separation of enantiomers. By replacing the phosphate buffer with borate buffer, the separation was not achieved.

Conclusions

The proposed HPLC chiral method is suitable for the separation of ibuprofen enantiomers. Further tests are necessary to conclude that the proposed method is suitable for chiral separation of ibuprofen in biological samples (i.e. plasma samples). None of the attempts regarding chiral capillary electrophoresis separation was successful.

Acknowledgement: the authors are thankful to Kacsá Boróka for her support during some determinations.

Conflict of interest

None to declare.

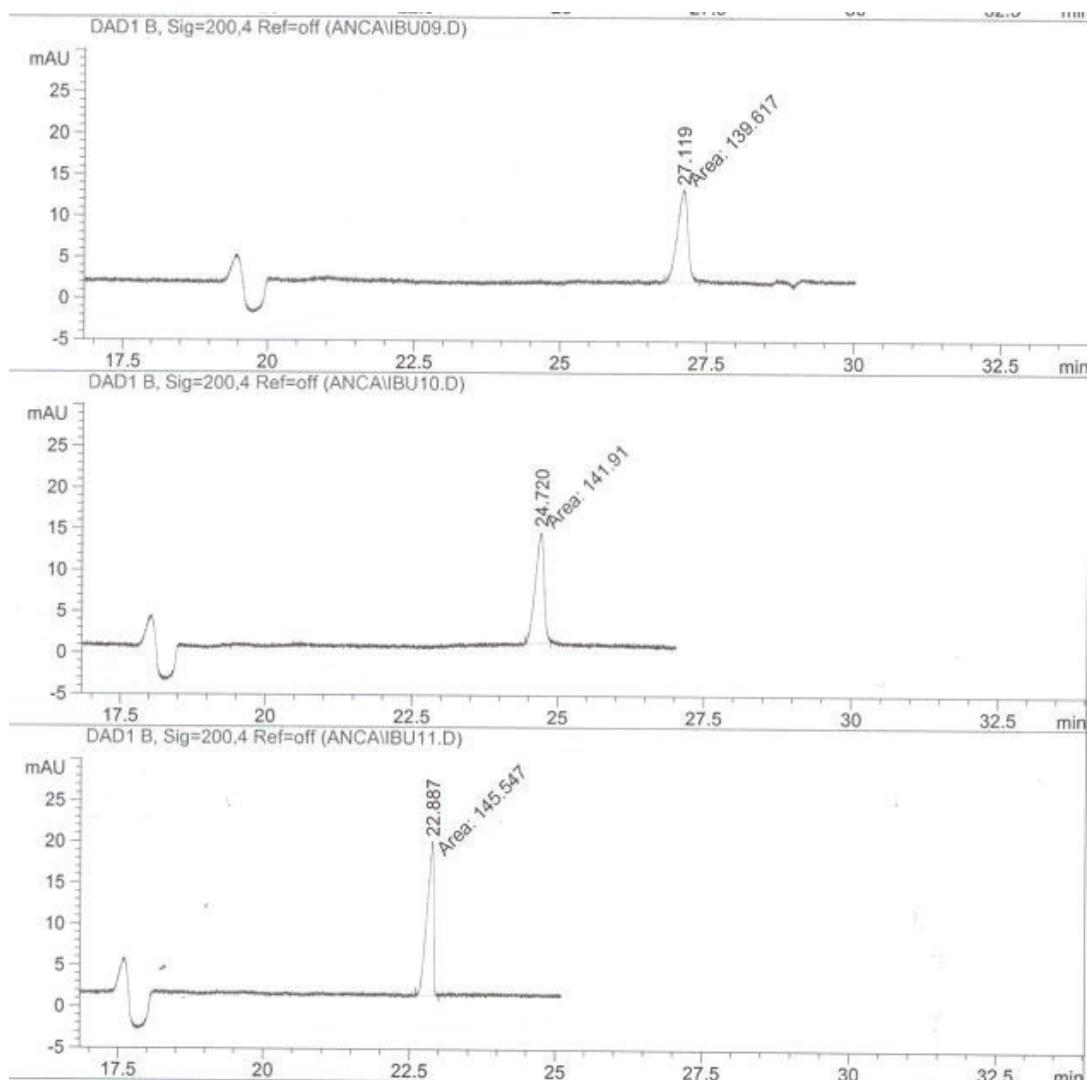


Fig 5. Ibuprofen electropherogram with phosphate buffer pH=6.8, methylbetacyclodextrine 10 mM, at 20C (up), 25C (middle), 30C (down)

References

1. Kjonaas RA, Williams PE, Counce DA, Crawley LR. Synthesis of Ibuprofen in the Introductory Organic Laboratory. *J Chem Educ.* 2011;88:825-828.
2. Schurig V. The Importance of Chirality in Nature and Methods of the Separation of Enantiomers by Chiral Chromatography. *Arab J Chem.* 2008;1:111-122.
3. El-Fatatty HM, Mabrouk MM, Hammad SF, El-Malla SF. A Validated Enantioselective HPLC Method for Determination of Ibuprofen Enantiomers in Bulk and Tablet Dosage Form. *J AOAC Int.* 2016;99:604-611.
4. Loudiki A, Boumya W, Hammani H, Nasrella H, El Bouabi Y, Zeroual M, Farahi A, Lahrich S, Hnini K, Achak M, Bakasse M, El Mhammedi MA. Ibuprofen-analysis in blood samples by palladium particles-impregnated sodium montmorillonite electrodes: Validation using high performance liquid chromatography. *Mater Sci Eng C Mater Biol Appl.* 2016; 69:616-624.
5. Rong L, Liu Q, Wang J, Zeng H, Yang H, Chen X. Enantioseparation of (RS)-ibuprofen by closed recycling high-speed counter-current chromatography using hydroxypropyl-beta-cyclodextrin as chiral selector. *Tetrahedron-Asymmetry.* 2016;27:301-306.
6. Nakov N, Petkovska R, Ugrinova L, Kavrakovski Z, Dimitrovska A, Svinarov D. Critical development by design of a rugged HPLC-MS/MS method for direct determination of ibuprofen enantiomers in human plasma. *J Chromatogr B – Anal Technol Biomed Life Sci.* 2015;992:67-75.
7. Zhang L, Yu W, Rong Y, Guo X, Ye J, Shena Z, Zeng S. Enantiomeric separation of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs and beta-blockers by RP-HPLC using an amylose chiral stationary phase for the enantioselective skin permeation study. *Anal Method.* 2014;6:6058-6065.
8. Ali I, Hussain I, Saleem K, Aboul-Enein HY. Enantiomeric Resolution of Ibuprofen and Flurbiprofen in Human Plasma by SPE-Chiral HPLC Methods. *Comb Chem High Throughput Screen.* 2012;15:509-514.
9. Johannsen M. Separation of enantiomers of ibuprofen on chiral stationary phases by packed column supercritical fluid chromatography. *J Chromatogr A.* 2011;937:135-138.
10. Crețu G, Ionică M, Dănet AF, Aboul-Enein H, Macavei R, Buleandă M. Separation of the enantiomers of ibuprofen by a gas chromatographic - mass spectrophotometric method. *Acta Chromatographica.* 2005;15:315-321.
11. Hashim NH, Khan SJ. Enantioselective analysis of ibuprofen, ketoprofen and naproxen in wastewater and environmental water samples. *J Chromatogr A.* 2011;1218:4746-4754.
12. Hamoudova R, Pospisilova M. Determination of ibuprofen and flurbiprofen in pharmaceuticals by capillary zone electrophoresis. *J Pharm Biomed Anal.* 2006;41:1463-1467.
13. Juvancz Z, Bodáné-Kendrovics R, Iványi R, Szente L. The role of cyclodextrins in chiral capillary electrophoresis. *Electrophoresis.* 2008;29:1701-1712.
14. Kawai T, Koino H, Sueyoshi K, Kitagawa F, Otsuka K. Highly sensitive chiral analysis in capillary electrophoresis with large-volume sample stacking with an electroosmotic flow pump. *J Chromatogr A.* 2012;1246:28-34.
15. Prokhorova AF, Larin VA, Mikhalyuk AN, Staroverov SM, Shapovalova EN, Shpigun OA. Enantioseparation of organic acids of pharmaceutical interest using eremomycin as a chiral selector. *Electrophoresis.* 2011;32(SI19):2663-2668.
16. Glowka F, Karazniewicz M. Enantioselective CE method for pharmacokinetic studies on ibuprofen and its chiral metabolites with reference to genetic polymorphism. *Electrophoresis.* 2007;28:2726-2737.
17. Imre S, Ormenișan A, Muntean DL, Tero-Vescan A, Vari CE. HPLC Enantioseparation of Beta-Blockers on Ovomucoid Stationary Phase. *J Chromatogr Sci.* 2016;54:1578-1583.
18. Cârje A, Ion V, Muntean DL, Hancu G, Balint A, Imre S. Enantioseparation of indapamide by high performance liquid chromatography using ovomucoid glycoprotein as chiral selector. *Farmacia.* 2016;64:181-186.
19. Awad H, Aboul-Enein HY, Lashin S. A validated enantioselective HPLC assay of dexibuprofen in dexibuprofen tablet formulations. *Biomed Chromatogr.* 2012;26:502-506.
20. Mehlisch DR, Sykes J. Ibuprofen blood plasma levels and onset of analgesia. *Int J Clin Pract Suppl.* 2013;178:3-8.

CASE REPORT

Practical Advantages of CBCT in the Surgical Treatment of Impacted Lower Third Molar

Alina Ormenișan, Alina Iacob*, Daniel Szava, Balint Bogozi, Adina Coșarcă

University of Medicine and Pharmacy Tîrgu Mureș, Romania

Introduction: The imaging method of cone beam is an improved, extremely accurate computed tomography applicable in the whole field of dentistry. Due to its ability to locate the exact position of the impacted teeth, CBCT software has an important role in the management of difficult cases of impacted third molar. In some situations, the lower third molar is quite near to the inferior alveolar nerve that the surgical extraction can present a high risk of post-operative sensitive impairs of the skin and mucosa of the lower lip and chin on the same side.

Presentation of case series: Our study tried to assess the contribution of CBCT in the pre-operative evaluation and further treatment of patients with impacted third molars in mandibular bone with high risk of inferior alveolar nerve injury. The paper presents three clinical cases showing positive signs on standard OPG, which exhibit indicators of a potential contact between the inferior alveolar nerve and the impacted lower third molars. For an improved exploration Dental CT Scan, DICOM image acquisition program, and 3D reconstruction with a special software were used. **Conclusions:** The study showed that compared with panoramic radiography, CBCT improve the evaluation of the surgical risk and allow a more accurate planning of surgery.

Keywords: impacted third molar, CBCT, inferior alveolar nerve, mandibular canal

Received 1 December 2016 / Accepted 16 January 2017

Introduction

In young adults, over 20 years old, the frequency of maxillary third molars impaction is considered to be about 46%, while the mandibular wisdom teeth impaction is approximately 73%. The incidence is equal for men and women. [1] One of the reasons that third molars inclusion can affect the health of the oral cavity is the large number and the frequency of clinical complications associated with it.[1,2]

The most common complications of the third molar eruption are: infections, dental crowding, tooth decay, periodontal disease, receding gums, loosened teeth, root resorption of adjacent teeth, and difficulties in adapting dental prostheses. Other modifications such as mandibular fractures, development of cysts and tumors, pain in head and neck area, trismus, trophic disorders are much more rare.[3]

To choose the right treatment is necessary to know the position and inclination of the tooth's long axis and the relationship to adjacent structures. Such information can be acquired using radiological examination.[4]

Since the first dental radiography performed in 1896 by Otto Walkhoff [5], radiological investigation methods used in dentistry have developed from standard x-ray images to digital radiology, CT scan, and MRI but especially to CBCT. The expense of MRI and high doses of radiation of classic CT limit their use to selected cases in maxillo-facial area.[6]

The emergence of CBCT corrected many deficiencies of existing technology, expanding the use of 3D technology to other fields of dentistry. Cone Beam imaging

method named CBCT is based on a perfected computed tomography technology applicable throughout the dentistry area.[7]

In maxillo-facial osseous conditions, CBCT provides information on the precise location of various pathological processes developed in the jaws or facial soft tissues and data about the adjacent anatomical structures.[8]

The presence of certain radiological signs on panoramic radiography such as narrowing, darkening or deflection of the root, dark, bifid or island-shaped apex, interruption of the mandibular canal cortical contour, canal deflection or narrowing, are associated with a veritable relationship between the roots of the third molar and the mandibular canal. However, only cross-sectional CT images obtained by conventional CT or CBCT can define the root-canal relationship in a buccal or lingual direction.[9]

Our study tried to assess the role of CBCT in the treatment of patients with impacted mandibular third molars in a difficult position and high risk of inferior alveolar nerve injury. The injury of the inferior alveolar nerve may represent a rare but serious neurologic complication in the surgery of the impacted third molars requiring a careful pre-operative imagistic evaluation of their anatomical relationship with the inferior alveolar nerve.

Presentation of case series

Panoramic radiography is considered to be sufficient in most cases prior removing mandibular third molars. However, CBCT is indicated when one or more signs of close contact between the wisdom tooth and mandibular canal are present in the two-dimensional image.

This paper presents three clinical cases showing positive signs on standard OPG, which exhibit signs of a potential

* Correspondence to: Alina Iacob
E-mail: czmaalina@yahoo.com

contact between the inferior alveolar nerve and the impacted lower third molars. For a better defining the relationship between third molars and the mandibular canal were used Dental CBCT (Cranex 3D provided by Soredex - Tuusula, Finland), DICOM image acquisition program, and 3D reconstruction with a special software.

Case 1

A 25-year-old female patient was referred to maxillo-facial surgery department for moderate pain in the right lower jaw. On oral examination, inferior anterior dental crowding and absence of bilateral inferior third molar were identified.

The panoramic radiography (Figure 1) showed mandibular canal image superimposed over the third molar roots, on both sides. Contour lines of the left mandibular canal were barely visible, indicating a most likely lingual location. On the right side was found interrupted the cortical bone of the upper part of the canal and darkening of the roots of the third molar.

To proceed to a safer surgery, the patient underwent a CBCT examination to better evaluate the connection between the mandibular canal and the roots of the third molars (Figure 2). CBCT examination confirmed the lingual position of the left mandibular canal to the roots of left

third molar and right mandibular canal crossing through the roots of the right third molar.

The 3-D reconstruction confirmed the information provided by CBCT images and offered the possibility to appreciate the arrangement of anatomical details.

After studying CBCT, the surgeon decided to perform odontotomy, roots separation and gentle removing of segments in both third molars in order to avoid inferior alveolar nerve lesion. The patient developed a post-operative sensorial deficiency in left inferior alveolar nerve territory which was recovered almost completely in 8 weeks.

Case 2

A 22-year-old woman was referred to our department for pain, radiating from the left lower jaw to the left ear which appeared approximately one week ago, with increasing intensity, that did not respond to ibuprofen and metamizole. On intraoral examination, was found left inferior third molar in an abnormal position, with extensive caries and dental crowding both in the lower and upper dental arches.

On panoramic radiography (Figure 3.) was observed partial inclusion of both mandibular third molars with complete root formation. The left third molar had a mesial-angulated position, in contact with the second molar, showing a deep carious process and mesial bone resorp-

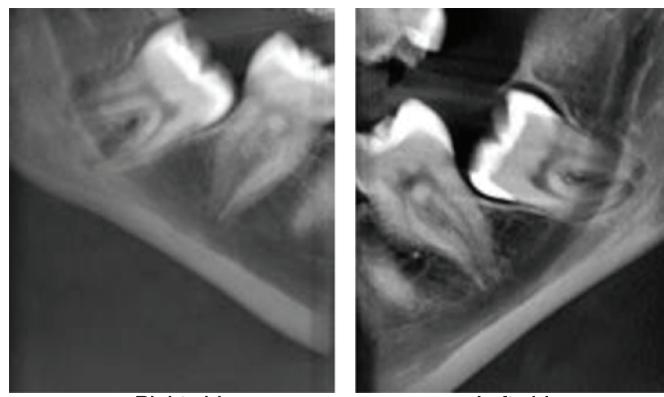


Fig. 1. Panoramic radiography

Fig. 3. Panoramic radiography with evident signs of close relationship of both lower third molars with mandibular canal

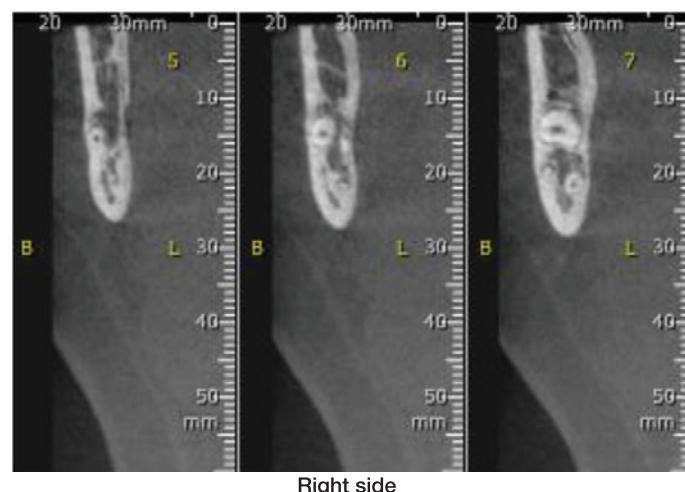
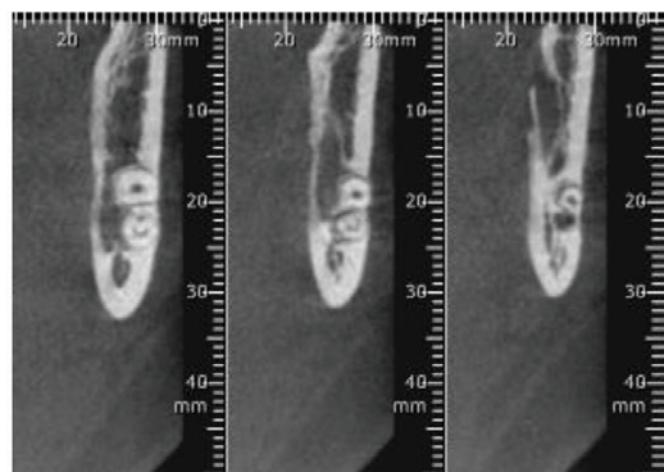



Fig. 2. CBCT section showing the intimate relationship between lower third molars roots and mandibular canal

tion. The roots were convergent overlapping on the mandibular canal. The mandibular canal cortical lines appeared well defined showing a slight deviation near the root apex.

On CBCT examination were specified the position of the left mandibular canal near the vestibular cortical and it contacts with the third molar roots (Figure 4.).

CBCT analysis indicated the position of the roots in contact with the mandibular canal and high risk of inferior alveolar nerve harming, the surgical option being modified for careful separate roots removal. The patient presented slight sensorial deficiency at the left lower lip level which has recovered in 2-3 weeks.

Case 3

A 24-year-old woman was examined in the emergency service for severe, radiating pain at the right lower jaw, which started 24 hours ago, with no obvious response to ibuprofen. Her medical and dental histories were unremarkable.

On panoramic radiography (Figure 5.) were found both mandibular third molars partially impacted with complete root formation. At the right second molar was observed a distal cavity associated with impacted third molar in a mesial incline. The right third molar presented roots overlapping on the mandibular canal whose shape appears as two radiopaque, net lines, which can be easily distinguished, not showing deviations, probably in a vestibular position.

On CBCT examination was identified a vestibular position of the mandibular canal and a punctiform contact with the roots of the right third molar (Figure 6.).

Surgical plan was modified from initial odontectomy to odontotomy with roots separation. The patient presented no post-operative sensory impairment.

Discussion

In oral and maxillo-facial surgery, panoramic radiography is the first-level imaging of choice in the pre-operative evaluation of the third molar.[10]

Radiographic signs, detectable on the panoramic radiography that indicate the presence of a close relationship between the inferior alveolar nerve and the lower third molar are [11,12]:

- Radiotransparent band darkening the root of the third molar because of the decreasing of bone density produced by the mandibular canal crossing the area.
- Interruption of the line marking the roof of the canal due to the root of the third molar crossing it.
- Sudden change of direction or narrowing of the mandibular canal at the point in which it is in contact with or superposed on the roots of the third molar.
- Abrupt deviation of the roots of the third molar at the point where they superpose on or come in contact with the mandibular canal.
- Bifid apex with third molar root darkening or root depression at the point where they are crossed by the inferior alveolar nerve.

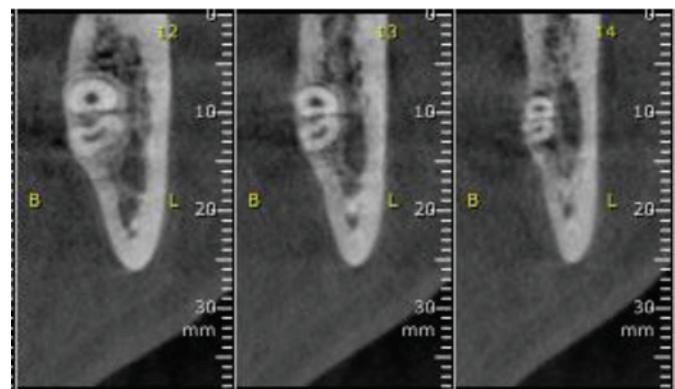


Fig. 4. CBCT sections indicating the left lower third molar roots in contact with mandibular canal

Fig. 5. Panoramic radiography that indicate signs of right third molar roots in possible contact with mandibular canal

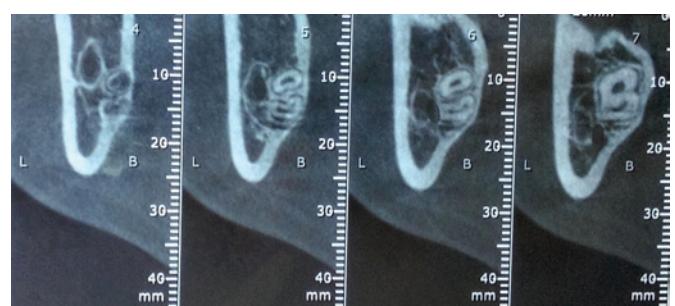


Fig. 6. CBCT sections showing the contact of the right lower third molar roots with mandibular canal

- Superposition of the roots of the third molar and the mandibular canal.
- The roots of the third molar are in contact with the roof of the mandibular canal

There are studies which report that darkening of the roots, interruption of the cortex of the roof of the canal, and canal deviation detected pre-operatively are the radiographic signs that are most often associated with inferior alveolar nerve exposure and intraoperative injury. [10,13,14,15]

The absence of positive radiographic signs on the panoramic radiography is preferable to their presence for pre-operative diagnostic purposes and for a reliable surgical approach. Without positive radiographic signs on pano-

ramic radiography, the risk of inferior alveolar nerve injury is considered to be small, but the presence of one or more signs might indicate a high probability of intra-operative exposure of the vascular-nervous bundle.[16]

Being a bi-dimensional examination, OPT does not provide information on the depth of the anatomical structures studied and locates the mandibular canal only in the vertical and not in the horizontal plane. On the other hand, it provides a distorted magnification by a variable factor greater horizontally than vertical, and anatomical structures are overlapped - air shadows, soft tissues, and phantom images.[16,17]

Some authors compared the diagnostic accuracy of OPT vs. CBCT in detecting the relationship between the root apex of third molars and the mandibular canal. A significant difference was found between the two techniques on the horizontal plane, but the diagnostic information provided by CBCT was far better.[18]

Most authors consent that CBCT and Dental CT Scan are the most effective imaging techniques to identify the localization of the mandibular canal regarding its superior/inferior and buccal/lingual dimensions, and the precise crown-root morphology of third molars.[18]

CT examination should be used only for patients in whom panoramic radiography shows one or more of the radiographic signs indicating an intimate relationship between the mandibular canal and the third molar root, but this relationship cannot be defined sufficiently using conventional radiology. [12,15,19,20] Thereby, it may substantially contribute on the planning of the surgical approach and on the evaluation of consequences and results. [16]

CBCT gives undistorted three-dimensional images with a very good resolution that allows visualization of anatomical structures shape and their real size.[21]

CBCT exam permits to evaluate the buccolingual relationship between the mandibular canal and the roots of the third molar thus avoiding to push the tooth during surgical movements and to hurt the inferior alveolar nerve. In this way can be planned the appropriate interradicular section if it is evident that the inferior alveolar nerve crosses the roots. CBCT exam can also identify the presence or the absence of cortical bone around the inferior alveolar nerve and allows to detect the number of roots of the third molar and the precise their anatomy. Furthermore, CBCT determines the inclination of the tooth and the position of the crown in relation to the buccal or lingual surface of the mandible.[16,22]

The usage of CBCT has reduced the cost for patients, and mostly it has improved the risk-benefit ratio by reducing the dose of radiations for patients compared to standard CT exam.[15] In cases where the roots of the third molars have a complex morphology being located in contact with the mandibular canal, the new 3D reconstruction programs assisting CT images provide sharp visualization

in the three spatial planes of the structures from the mandibular canal that have to be respected.[16]

3D images are not mandatory for the pre-operative evaluation of third molars. They only complete anatomical image's details that might influence the surgical approach: single or multiple odontotomy, depth of osteotomy or direction of luxation which can be programmed more accurately.[16]

Conclusions

CBCT is an excellent diagnostic method for selected situations in oral and maxillo-facial surgery, including evaluation of mandibular third molars, but its efficiency has been lesser studied yet. Panoramic radiography may be sufficient in most cases before removal of mandibular third molars, but CBCT may be indicated when one or more signs of close contact between the tooth and the mandibular canal are present in the standard panoramic radiography. In these situations, CBCT might change the surgical approach and patient's outcomes.

The study have shown that CBCT contributes to optimal risk assessment and an adequate surgical planning, compared with panoramic radiography.

The mandibular morphology at the third molar region with impacted teeth and the location of the mandibular canal could be distinctly determined using cross-sectional CBCT images.

Acknowledgment

This paper was partially sustained by the Project No. 912/2015 financed by S.C. OPTOMED SRL in collaboration with UMF TG. MURES.

Conflict of interest

None to declare.

References

1. Carter K, Worthington S. Predictors of Third Molar Impaction: A Systematic Review and Meta-analysis. *J Dent Res.* 2016 Mar;95(3):267-76.
2. Huang GJ, Cunha-Cruz J, Rothen M, Spiekerman C, Drangsholt M, Anderson L, Roset GA. A Prospective Study of Clinical Outcomes Related to Third Molar Removal or Retention. *Am J Public Health.* 2014;104(4):728-234.
3. American Association of Oral and Maxillofacial Surgeons, The Management of Impacted Third Molar Teeth, 2013
4. Chandak S, Shetty CM – Comparative Study of Dentascan and Radiography for Radiological Evaluation of Impacted Teeth, *J Clin Diagn Res.* 2014, 8(7): RC01-RC05.
5. Sansare K, Khanna V, Karjodkar – Early Victims of X-rays: a Tribute and Current Perception, *Dentomaxillofac Radiol.* 2011, 40(2): 123-125.
6. Miles DA – Metoda Imagistică cu Fascicul Conic – “De ce Atâtă Agitație în Legătură cu Doza de Radiati?”, *Revista de Imagistică Dentară.* 2010, 2: 14-22.
7. Matzen LH, Wenzel A – Efficacy of CBCT for Assessment of Impacted Mandibular Third Molars: a Review – Based on a Hierarchical model of evidence, *Dentomaxillofac Radiol.* 2015, 44(1): 20140189.
8. Gonzalez SM – Interpretation Basics of Cone Beam Computed Tomography, *Wiley Blackwell, Iowa.* 2014, 16-22.
9. de Melo Albert DG, Gomes AC, do Egito Vasconcelos BC, de Oliveira e Silva ED, Holanda GZ. Comparison of orthopantomographs and conventional tomography images for assessing the relationship between

impacted lower third molars and the mandibular canal. *J Oral Maxillofac Surg.* 2006;64:1030-37.

10. Atieh MA. Diagnostic accuracy of panoramic radiography in determining relationship between inferior alveolar nerve and mandibular third molar. *J Oral Maxillofac Surg.* 2010;68:74-82.
11. Koong B, Pharoah MJ, Bulsara M, Tenant M. Methods of determining the relationship of the mandibular canal and third molars: a survey of Australian oral maxillofacial surgeons. *Aust Dent J.* 2006;51:64-68.
12. Friedland B, Donoff B, Dodson TB. The use of 3-dimensional reconstruction to evaluate the anatomic relationship of the mandibular canal and impacted mandibular third molars. *J Oral Maxillofac Surg.* 2008;66:1678-1685.
13. Dodson TB. Role of computerized tomography in management of impacted mandibular third molars. *N Y State Dent J.* 2005 Nov
14. Bell GW. Use of dental panoramic tomographs to predict the relation between mandibular third molar teeth and the inferior alveolar nerve. Radiological and surgical findings, and clinical outcome. *Brit J Oral Maxillofac Surg.* 2004;42:21-27
15. Sedaghatfar M, August MA, Dodson TB. Panoramic radiographic findings as predictors of inferior alveolar nerve exposure following third molar extraction. *J Oral Maxillofac Surg.* 2005;63:3-7.
16. Tuzi A, Di Bari R, Cicconetti A. 3D imaging reconstruction and impacted third molars: case reports. *Ann Stomatol (Roma).* 2012 Jul-Dec; 3(3-4): 123-131.
17. Liu T, Xia B, Gu Z. Inferior alveolar canal course: a radiographic study. *Clin Oral Implants Res.* 2009;20:1212-1218
18. Neugebauer J, Shirani R, Mischkowski RA, Ritter L, Scheer M, Keeve E, Zoller JE. Comparison of cone beam volumetric imaging and combined plain radiographs for localization of the mandibular canal before removal of impacted lower third molars. *Oral Surg Oral Med Oral Pathol Oral Radiol End.* 2008;105:633-42.
19. Flygare L, Ohman A. Preoperative imaging procedures for lower wisdom teeth removal. Review. *Clin Oral Invest.* 2008;12:291-302
20. Susarla SM, Dodson TB. Preoperative computed tomography imaging in the management of impacted mandibular third molars. *J Oral Maxillofac Surg.* 2007;65:83-88.
21. Suomalainen A, Esmaeili EP, Robinson S – Dentomaxillofacial Imaging with Panoramic Views and Cone Beam CT, Insights Imaging, 2015, 6(1): 1-16.
22. Pippi R. A case of inferior alveolar entrapment in the roots of a partially erupted mandibular third molar. *J Oral Maxillofac Surg.* 2010;68:1170-1173.

Statement of ethics

The journal observes and values the principles of ethics in scientific research, as previously highlighted in the main document on the topic: "The code of ethics for scientific research of the Târgu Mureş University of Medicine and Pharmacy" and according to all the documents enlisted as source of our code. We promote innovative research and original articles are thus prioritized. The editors adhere to the views and recommendations of the International Committee of Medical Journal Editors.

All forms of plagiarism will be exposed when and if evidenced. Therefore, we discourage ghost writing and guest authorship, including the situation when the author was unaware of being enlisted as co-author and as such, the cover letter is invalidated.

The peer-review process is intended to be a complimentary supplemental investment of expertise and is highly valued when well accomplished.

The best peer-reviewers will be acknowledged by the editors and we promise to drop out the peer-reviewers who repeatedly acted as if their task was burdensome or annoying, and came up with shallow reports.

The journal encourages PhD students to publish their research. Reviews and "state of the art" articles will be hosted upon invitation. When judging the quality of the research, double standards are not an option.

Our retraction policy is intended to the articles inadvertently published, due to an unfair submittance, by this defining any form issue that trespasses our statement of ethics.

Errata will be inserted as soon as an error is detected, either spontaneously or by authorized notice.

Instructions for authors

All submitted manuscripts must be written in English. All authors should sign a *Licence to publish*, according to the model available here. This license to publish signed by all authors should be uploaded together with the manuscript on the editorial manager platform at the time of submission.

The corresponding author must complete and sign a *Cover Letter*, on behalf of all authors. This must contain the title of article, the name(s) of all author(s). The Cover Letter should attest that:

1. The manuscript is not submitted for publication elsewhere; in this case the cover letter must include the topic: "this paper has not been published previously" or "the results presented in this paper have not been published previously in whole or in part, except in abstract form";
2. The manuscript is an original work without fabrication, fraud, or plagiarism;
3. The author has read the complete manuscript and takes responsibility for the content of the manuscript;
4. Authors are required at the time of submission to disclose any potential conflict of interest (employment, consultancies, stock ownership, equity interests, and patent-licensing arrangements);
5. In the Cover letter must be included a description of each author's contribution. Authorship credit should be based on (a) substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting the article or revising it critically for important intellectual content; and (c) final approval of the version to be published. Authors should meet conditions a, b, and c. (See *Uniform Requirements for Manuscripts Submitted to Biomedical Journals: Ethical Considerations in the Conduct and Reporting of Research: Authorship and Contributorship*).

Manuscripts that do not conform to the format guidelines will be returned to the authors for reformatting.

Manuscripts should respect all the requirements outlined below.

Acta Medica Marisiensis accepts for publication the following types of articles: original research, review, brief report, case presentation, case series, state of the art, letter to editor, editorial.

Font size and style, page layout and manuscript lenght. The text of the manuscript should be typed double spaced in 12 point font using 2 cm wide margins all around. Do not write with "Caps lock" on, not even for names and titles. For emphasis use only italics (no bold, no underline). All pages should be numbered consecutively. As a guide for manuscript length, there should be no more than 1 figure or 1 table for every 500 words.

Copyright. If any tables, illustrations or photomicrographs have been published elsewhere, written consent for re-publication must be obtained by the author from the copyright holder and the author(s) of the original article.

The signed permissions must be submitted with the manuscript and be identified as to the relevant item in the manuscript (e.g., "permissions for Figure 1").

Abbreviations. Except for units of measurement, abbreviations are strongly discouraged. Do not use abbreviations unless absolutely necessary. In order to abbreviate – the first time an abbreviation appears, it should be preceded by the words for which it stands.

Manuscript style. Assemble manuscripts in the order listed:

1. Title page, without author information. Do not write with "caps lock" on!
2. Abstract and keywords
3. Introduction
4. Methods
5. Results
6. Discussion
7. Acknowledgements and funding page
8. References
9. Appendices
10. Tables (including titles)
11. Figures (including titles and legends)

The format may be altered for review articles and case reports, if necessary.

Title page. The title page should contain only the title of the article, without any information related to name of authors, their affiliation or the address for correspondence. These information will be uploaded directly on editorial manager

platform and their appearance in the text of the manuscript should be avoided, in order to ensure a blinded review process.

Use titles that stimulate interest, are easy to read and concise and contain enough information to convey the essence of the article. Title must not contain abbreviations. Do not write with „caps lock” on. Do not use symbols, special characters, or math formulas.

Abstract. Include no more than 250 words with the following headings: Objective, Methods, Results, and Conclusions. Insert a hard return (press the Enter key) before each heading. References should not be cited in the Abstract. Do not use acronyms or abbreviations. Do not use symbols, special characters, or math formula or spell them out (i.e.: alpha, beta, microns, etc.) or translate them (mean, chi square, etc.). Abstract should be written on a separate page following the title page.

Keywords: not more than 5, characterizing the scope of the paper, the principal materials, and main subject of work. Keywords must be written in small letters and separated by commas. Please use academically accepted keywords.

Manuscript text. Original research articles must include five main headings: Introduction, Methods, Results, Discussion, and Conclusion.

The presentation must be clear, concise and logically organized.

Introduction. Use very short introductions for presenting the context of the research for readers. Always end the introduction section with a clear statement of the study's objectives or hypotheses.

Methods. This section must describe the design of the study (selection/recruitment of patients, the number of patients), the study procedures including any interventions, measurements and data collection techniques and also the methods used for the statistical analysis.

For all manuscripts reporting data from studies involving human participants or animals, formal review and approval by an appropriate institutional review board or ethics committee is required and should be described in the Methods section. For those investigators who do not have formal ethics review committees, the principles outlined in the Declaration of Helsinki should be followed. For investigations of humans, state in the Methods section the manner in which informed consent was obtained from the study participants (i.e., oral or written). Editors may request that authors provide documentation of the formal review and recommendation from the institutional review board or ethics committee responsible for oversight of the study.

Results. In this section, the main characteristics of participants and your major findings must be presented.

Tables. Tables should not be embedded in the text of the article. Each table should have a brief descriptive title placed above the table. The approximate position of each table should be indicated in the manuscript (i.e.: Insert Table I). Tables must not duplicate material in text or figures. Cite each table in text in numerical order. Tables should be numbered consecutively with Roman numerals and must be cited exactly as "(Table I, Table II, etc)". All explanatory information and abbreviations should be given in a footnote below the table. Tables should be submitted as editable text and not as images. Each table should be typed single-spaced on a separate page after the Reference section in the submitted manuscript.

Figures. Figures should not be embedded in the text of the article. Each figure should have a brief descriptive title placed below the figure. The approximate position of each figure should be indicated in the manuscript (i.e.: Insert Figure 1). Figures must be numbered as they appear in the text and numbered consecutively with Arabic numerals (Figure 1, Figure 2, etc). Letters of permission from the copyright holder must accompany submission of borrowed material. Each figure should be presented on a separate page after the Reference section in the submitted manuscript. Figure legends should be typed single-spaced consecutively on a separate page.

Photomicrographs should include stain and magnification data at the end of the legend for each part of the figure. A magnification bar should be added to each photomicrograph. If no scale marker appears in the figure, the original magnification should be reported in the legend.

Figures are either black and white drawings, halftones (photographs), or com-

puter (laser) graphs or prints. Authors are responsible for the cost of printing color illustrations. Authors are also responsible for obtaining from the copyright holder permission to reproduce previously published figures. Where photographs of patients are included, consent to publish the photograph, signed by the patient must accompany the manuscript.

All figures should be submitted at a proper resolution as follows: monochrome images (images such as line graphs) will be submitted at a resolution of a minimum 900 DPI; black/white or color images will be submitted at a resolution of 300 DPI; combination halftones (images containing both pictures and text labeling) should be submitted at minimum of 600 DPI. Acceptable figure formats are JPEG and TIFF. Labels should be written using a font size appropriate for easy reading at a printed width of 87 mm for single-column fitting figures or 180 mm for 2-column fitting figures.

When submitting bar graphs, it should be taken into consideration that various patterns of black do not reproduce well.

All figures submitted for the review process must be in digital format, must be sent separately from the text file and must be named as Figure 1, Figure 2, etc.

Identification of Patients in Descriptions and Photographs. A signed statement of informed consent to publish (in print and online) patient descriptions and photographs should be obtained from all persons (parents or legal guardians for minors) who can be identified (including by the patients themselves) in such written descriptions, photographs and should be submitted with the manuscript and indicated in the Acknowledgment section of the manuscript.

Names of Drugs, Devices, and Other Products. Use only generic names of drugs, devices, and other products, unless the specific trade name of a drug is essential to the discussion.

Reproduced Materials. When previously published figures or tables are used, the author must obtain written permission from the copyright holder (usually the publisher) to reproduce the material in print and online. An appropriate credit line should be included in the figure legend or table footnote, and full publication information should be cited in the reference list.

Discussion. Provide a brief synopsis of your major findings, with particular emphasis on how the findings add to the body of pertinent knowledge, discuss possible mechanisms and explanations for the findings, compare study results with relevant findings from other published work, and discuss the limitations of the present study.

Conclusions. Provide only conclusions of the study directly supported by the results, along with implications for clinical practice, avoiding speculation and over-generalization. \

References. Authors are responsible for the accuracy and completeness of their references and for correct text citation.

The references should be numbered in the text between square brackets in citation order, making sure each is quoted in sequence in the text. In-text reference numbers may be repeated but not omitted. References cited in a table or figure legend should also be numbered.

The references list should give the name and initials of surname of all authors unless there are more than six, when only the first three should be given followed by et al. The authors' names should be followed by the title of the article, the title of the Journal abbreviated according to the style of Index Medicus, the year of publication, the volume number and complete page numbers.

For books one should give the name and initials of surname of all authors, the title of the book, which should be followed by the place of publication, the publisher, the year and the relevant pages.

For book chapters one should provide the name and initials of surname of all authors of the chapter, the title of the chapter, which should be followed by the name of editors, the name of the book, the place of publication, the publisher, the year and the relevant pages.

The titles of the journals should be abbreviated according to the style used in Index Medicus. Names of journals that are not cited should be entirely spelled out. Avoid using abstracts as references. Avoid citing a "personal communication".

The format for journal article, chapter, book, and publish-ahead-of-print journal article references is exactly as below:

For journals:

Hammermeister KE, Dodge HT – Evidence from a nonrandomized study that coronary surgery prolongs survival in patients with two-vessel coronary disease. Eur Heart J. 1979;59:1430-1435.

For book chapters:

Franz M – Monophasic action potential mapping, in Shenasa M, Borggrefe M,

Breithardt G (eds): Cardiac Mapping. Futura Publishing Co.Inc. Mount Kisco, NY, 1993, 2565-2583

Acknowledgments. The Acknowledgments section may acknowledge contributions from non-authors, list funding sources, and should include a statement of any conflicts of interest.

Acta Medica Marisiensis considers all authors to be responsible for the content of the entire paper.

Other types of articles

a. Reviews. Review articles should include a brief abstract of no more than 200 words and the text should be limited to 5.000 words including references, tables and figures. Review articles can be submitted by invitation or unsolicited.

b. Case reports and case series. Case reports should be limited to presentation of a single particular and uncommon case, or uncommon presentation of a disease. Case series include description of a series of a maximum of 10 cases with common particularities. The abstract should be limited to 200 words, being divided into introduction, case presentation / presentation of case series and conclusions. The full manuscript should not exceed 2.000 words including references, figures and tables, being divided into sections headed Introduction, Case presentation / presentation of case series, Discussions, Conclusions.

c. Brief reports. Brief reports refer to articles presenting a short communication related to an original preclinical or clinical study which is not a case presentation or a case series report. The abstract should be limited to 200 words and the full text (including references, tables and figures) to 3.000 words.

d. Letter to editor. A letter to the editor may refer to an article recently published by the journal, commenting on the article in a constructive professional manner the content of which, in the opinion of the author(s) would add the current status of knowledge in the field. The letters should be limited to 500 words, 5 references and 3 authors. No abstract is required.

e. Editorial. Editorials should be limited to 2000 words (including references) and should be related to an article published in the current number or to a specific topic that is current and of high interest to the readers.

f. State-of-the-art papers. The journal publishes state-of-the-art articles that aim to provide an update on the current status of areas of high interest. The principal aim of such articles is to offer the specialist and other practitioners a source of continuing education and forum for discussion. A state-of-the-art article should have a full text limited to 4.000 words, in addition to a 200 word unstructured abstract. Sections of the article should be divided using headings relevant to each particular case.

Manuscript limits specifications

Article type	Manuscript word limit	Maximum number of references	Maximum number of figures and tables	Abstract (max 250 words)
Review	5000	70	6	Yes
Original article	3500	40	6	Yes
Case report	2000	25	3	Yes
Letter to the Editor	1500	10	1	No

Publication fee. The publication fee for accepted article is 250 RON. The manuscript will be sent to the publication system only after the corresponding author pays the publication fee. The payment should be made in the name of the corresponding author at the University of Medicine and Pharmacy of Tîrgu Mureş cash desk or by bank transfer to the following account:

RO29TREZ47620F331600XXXX, Trezoreria Tîrgu Mureş, for: Universitatea de Medicină și Farmacie Tîrgu-Mureş, CF 4322742, Str. Gh. Marinescu nr. 38, Mureş Please mention "Article publication fee for *Acta Medica Marisiensis*" or "Taxa publicare articol *Acta Medica Marisiensis*".

The corresponding author will receive one printed issue of *Acta Medica Marisiensis* and 10 reprints of the published article. Please send the scanned proof of payment to ammjourn@umftgm.ro, with the subject "Publication fee".

For any further information please contact the Journal's editorial office at ammjourn@umftgm.ro